علی قنبری زاده
علی قنبری زاده
خواندن ۹ دقیقه·۴ سال پیش

هوش مصنوعی؛ از کجا تا به کجا؟

Artificial Intelligence
Artificial Intelligence

سلام من علی قنبری زاده هستم و تو پست قبلی از تکنولوژی حرف زدیم حالا وقت این رسیده تا به یک سری از این تکنولوژی‌ها سر بزنیم و با هم اون‌ها رو بررسی کنیم. تو اولین بررسی میریم سراغ تکنولوژی هوش مصنوعی، پس با من همراه باشید.

ایستگاه اول، تاریخچه هوش مصنوعی

هوش مصنوعی یا در واقع (Artificial Intelligence) AI رو میشه یک تکنولوژی قدیمی ازش یاد کرد بله قدیمی چون اولین بار از اون در جنگ جهانی دوم توسط نیروهای آلمانی استفاده شد.

اونها برای ارسال ایمن و رمزنگاری شده پیغام‌های سراغ یک ماشین رمزنگاری به اسم enigma میرن، هرچند این ماشین توسط اقای تورینگ رمزگشایی شد و شکست خورد ولی همین شکست‌ها باعث شد هیچ وقت هوش ماشینی(اسم دیگه هوش مصنوعی) ثابت نمونه و برای چیزی که الان داریم میبینی تلاش کنه.

هوش مصنوعی توسط فلاسفه و ریاضی‌دانانی نظیر جرج بول که اقدام به ارائهٔ قوانین و نظریه‌هایی در مورد منطق نمودند، مطرح شده بود. با اختراع رایانه‌های الکترونیکی در سال ۱۹۴۳، هوش مصنوعی، دانشمندان آن زمان را به چالشی بزرگ فراخواند. در این شرایط، چنین به‌نظر می‌رسید که این فناوری قادر به شبیه‌سازی رفتارهای هوشمندانه خواهد بود.

با وجود مخالفت گروهی از متفکرین با هوش مصنوعی که با تردید به کارآمدی آن می‌نگریستند تنها پس از چهار دهه، شاهد تولد ماشین‌های شطرنج باز و دیگر سامانه‌های هوشمند در صنایع گوناگون شدیم.

ایستگاه دوم، یک تعریف ساده از هوش مصنوعی (هوش ماشین)

اگه بخواییم این تکنولوژی رو خیلی ساده و خارج از تمام پیچیدگی که داره تعریف کنیم، میتونیم به این تعریف اشاره کنیم:

یک شاخه از علوم کامپیوتر که هدف اصلی آن برنامه نویسی برای ماشین‌ها و ابزارت صنعتی به گونه‌ای که به مانند یک انسان بتوانند فکر کنند، تصمیم بگیرند و انجام دهند. این تعریف در هر دیدی از صنعت میشه از اون استفاده کرد، در گذشته ما با شنیدن این کلمه فقط ربات‌ها بودن که در ذهن ما تصویرسازی میشد اما تو دوره امروز حتی یک سایت هم میتونه از هوش مصنوعی برای تحلیل رفتاری کاربر استفاده کرد.

شاخطه‌هایی که این تعریف رو میسازه شامل:

  • یادگیری
  • استدلال
  • درک

ایستگاه سوم، لایه‌های هوش مصنوعی

متخصصین این حوزه این تکنولوژی رو به دو دسته تقسیم میکنند:

  • ANI
  • AGI

لایه اول، هوش مصنوعی ضعیف

در اولین لایه میریم سراغ ANI (Artificial Narrow Intelligence) یا هوش محدود مصنوعی.

این مدل از هوش مصنوعی فقط میتونه تو یه محدوده خاص فعالیت کنه به طور مثال پروژه آبی بزرگ (Big Blue) که یه ابرکامپیوتر در سال 1997 بود تا بتون بزرگ‌ترین شطرنج باز جهان رو شکست بده، این مدل از هوش مطنوعی که در سطح خودش فوق العادس فقط برای یه کار محدود از اون استفاده میشه و اون هم شکست دادن شطرنج بازه.

شاید تا به حال متوجه این موضوع نبوده باشید، ولی همین حالا هم توسط هوش مصنوعی ضعیف یا ANI محاصره شده‌ایم. ماشین‌هایی که عادات جستجوی شما در گوگل را ردگیری می‌کنند و بر اساس هزاران متغییر مختلف تبلیغات مناسب را برای شما به نمایش در می‌آورند، بر اساس ANI های ابتدایی ساخته شده‌اند که در طول زمان سلایق شما را یاد می‌گیرند.

لایه دوم، هوش مصنوعی عمومی

هر چیزی که بتون یه تغییر بزرگ رو توی نحوه زندگی کردن با ایجاد بکنه رو میتونیم AGI (Artificial General Intelligence) یا هوش مصنوعی عمومی بنامیم.

دانشمندان در پی شبیه سازی مغز انسان هستند. اما به دلیل توان کم ابر کامپیوتر‌های فعلی و مصرف زیاد انرژی این کار به صورت کامل امکان پذیر نیست. IBM برای رفع مشکل مصرف انرژی ابر کامپیوتر‌ها، در حال توسعه‌ی تراشه‌هایی مبتنی بر شبکه‌‌های عصبی است. IBM تا به حال توانسته به قدرتی فراتر از قدت پردازشی مغز یک موش دست پیدا کند. اندازه کل مجموعه‌ی طراحی شده برابر با سایز یک یخچال کوچک است.

درون این مجموعه بسته‌‌های کوچکی به اندازه‌ی درایو دیسک سخت ( هارد درایو) رایانه قرار گرفته است. داخل این بسته‌های کوچک تراشه‌هایی که همگی مبتنی بر فناوری شبکه‌های عصبی هستند قرار گرفته‌اند. IBM این تراشه‌ها را True North نام گذاریکرده است.  این تراشه‌ها با استفاده از سیلیکون و متشکل از آنالوگ‌های فیزکی طراحی شده‌اند که شامل نئورون‌ها و سیناپس‌ها (ارتباط بین نئورون) هستند و به صورت اختصاصی برای فعالیت در بستر شبکه‌های عصبی طراحی شده‌اند.

هر تراشه شامل بیش از یک میلیون نئورون و ۲۵۶ سیناپس بین نئورون‌ها است. درون هر بسته  بیش از ۴۸ میلیون نئورون سیلیکونی قرار گرفته که تعداد آن‌ها از نئورون‌های موجود در غشا مغزی یک موش بیشتر است. مغز موش‌ها بیش از ۲۱ میلیون نئورون در خود جای داده است. با در نظر گرفتن این موضوع می‌توان به جرات گفت که قدرت پردازشی فوق‌العاده‌ای درون این بسته‌ها جا گرفته است. پیاده‌سازی چنین شبکه‌ی عظیمی با استفاده از معماری‌های معمول می تواند فضای زیادی را اشغال کند بطوریکه انرژی مورد نیاز برای راه‌اندازی آن می‌توان با انرژی الکتریکی مورد نیاز یک شهر برابری کند؛ اما آنچه که IBM ساخته است تنها به ۷۰ میلی وات انرژی نیاز دارد.

اما اگر روزی یک شبیه سازی کامل از مغز انسان ساخته شود؛ این شبیه ساز باید قادر به فکر کرن درک احساسات انسانی مانند عشق، نفرت و درد باشد و همانند یک انسان عمل کند.

ایستگاه ما قبل پایان، تفاوت هوش‌های مصنوعی

هوش مصنوعی محدود (ضعیف) جایی است که ما در حال حاضر در آن قرار داریم و هوش مصنوعی عمومی آینده ای است که می‌خواهیم به آن برویم و سوپر هوش مصنوعی آینده‌ای است که برای هوش مصنوعی می‌بینیم که حاصل تکامل و هوشمند شدن هوش مصنوعی است.

هوش مصنوعی محدود به این معنا است که در آن سیستم هوش مصنوعی میزان خاصی از هوش را در یک زمینه خاص به کار ببرد. در حقیقت این سیستم هنوز یک کامپیوتر است اما یک کامپیوتری که در برخی از زمینه‌ها هوشمندتر از انسان عمل می‌کند.

معنای هوش مصنوعی عمومی بسیار پیچیده‌تر است. این واژه به سیستمی اطلاق می شود که می‌توانند همانند یک انسان هر کاری را بکه به او محول می‌شود را انجام دهد. ایده آل هوش مصنوعی عمومی آن است که بتواند به درک تجربی و شناخت کلی از محیط هایی که در آن قرار می‌گیرد داشته باشد و هم چنین بتواند داده‌ها و اطلاعاتی که به او داده می‌شود را با سرعتی چند برابر انسان پردازش نماید. از این رو می‌توانیم بگوییم که سیستم‌های هوش مصنوعی عمومی در بعد دانش ، توانایی شناختی و سرعت پردازش از انسان‌ها قوی‌تر عمل خواهند کرد نکته مهم این است که این سیستم زاده مغز و علم بشر است.

ایستگاه پایانی، کاربرد هوش مصنوعی در کسب و کارهای مختلف

از این علم می توان در کسب و کارهای مختلف استفاده کرد و در هر کسب و کاری منفعت های بسیاری را به همراه خواهد داشت. در ادامه به چند نمونه از این کاربرد ها در هر حوزه می پردازیم:

هوش مصنوعی در حوزه سلامت

مهم ترین نکته در این حوزه بهبود نتایج بیماران و در عین حال کاهش هزینه است. شرکت های فعال در حوزه سلامت می خواهند با استفاده از یادگیری ماشین، روند تشخیص و درمان را بهتر و سریعتر انجام دهند. یکی از شناخته شده ترین فناوری ها در این زمینه سیستم IBM Watson است. این سیستم زبان طبیعی را درک می کند و قادر به پاسخگویی به سوالاتی که از آن پرسیده می شود است. این سیستم تمام اطلاعات مربوط به بیمار از منابع موجود را استخراج می کند تا یک فرضیه ایجاد کند و پس از اطمینان آن را ارائه می دهد. سایر برنامه هایی که هوش مصنوعی دارند مانند چت بات ها، می توانند به بیماران برای برنامه ریزی قرار ملاقات، پاسخ به پرسش ها، صدور صورت حساب کمک کنند و یا به صورت یک دستیار سلامت مجازی به فرد بازخوردهای پزشکی ارائه دهد.

هوش مصنوعی در حوزه کسب و کار

برای کارها و فرآیندهای بسیار تکراری که در هر کسب و کار توسط انسان ها انجام می شود، می توان از فرآیندهای اتوماسیون رباتیک استفاده کرد. الگوریتم های یادگیری ماشین می توانند با analytics و CRM ادغام شوند تا با کشف اطلاعات لازم، بهتر به مشتریان خدمت کنند. از چت بات ها نیز می توان برای ارائه خدمات فوری به مشتریان در وب سایت نیز استفاده کرد.

هوش مصنوعی در حوزه آموزش وپرورش

هوش مصنوعی در این حوزه می تواند به خودکار شدن نمره دهی و درجه بندی دانش آموزان کمک کند و به معلمان زمان بیشتری بدهد. هوش مصنوعی می تواند دانش آموزان را ارزیابی کند و با نیازهای آن ها سازگار باشد و با هر فرد متناسب با سرعت او کار کند. سیستم های مربی هوش مصنوعی می توانند پشتیبانی بیشتری به دانش آموزان ارائه دهند و اطمینان حاصل کنند که روند آموزش آن ها در راه درستی قرار دارد. Artificial intelligence می تواند نحوه یادگیری و مکان یادگیری دانش آموزان را تغییر دهد و حتی برخی از معلمان او را عوض کند.

هوش مصنوعی در حوزه اقتصاد

سیستم های هوش مصنوعی در برنامه های مالی شخصی، مانند Mint یا Turbo Tax، می توانند اطلاعات مالی شخصی هر فرد را جمع آوری کنند و به آن ها مشاوره مالی دهند. از برنامه های دیگر مانند IBM Watson حتی در روند خرید خانه نیز می توان استفاده کرد. امروزه نرم افزارها در وال استریت بخش عظیمی از معاملات را انجام می دهند.

هوش مصنوعی در حوزه قانون و قضا

روند کشف اسناد و مدارک غالبا برای انسان ها بسیار سخت است. اتوماسیون و هوش مصنوعی می تواند به این فرآیند کمک کرده و کارآمدتر از زمان استفاده کند. استارتاپ ها در حال ساخت دستیارهای رایانه ای هستند که پرسش و پاسخ ها را غربال می کند و می توانند با بررسی و طبقه بندی و یک بانک اطلاعاتی ، سؤالات برنامه ریزی شده در زمینه هستی شناسی را پاسخ دهد.

هوش مصنوعی در حوزه تولید

این زمینه ای است که ربات ها هرچه تمام تر می توانند کار را به گردش دربیاورند. ربات های صنعتی می توانند تک تک وظایف محول شده را به طور کامل انجام دهند و جدا از کارکنان انسانی فعالیت کنند.

هوش مصنوعی در برقراری امنیت

از هوش مصنوعی و تکنولوژی پردازش تصویر در برقراری امنیت، ردیابی مجرمان، پیدا کردن هویت خلافکاران و… استفاده می‌شود. این سیستم‌ها قادرند با استفاده از هوش مصنوعی چهره افراد مختلف، موجودیت اشیاء و … را تشخیص دهند و هنگام مشاهده انجام تخلفات یا عملی مجرمانه آن را تشخیص داده و به نهاد مربوطه هشدار دهد.

هوش مصنوعی و تفسیر داده‌ها

کلان داده یا بیگ دیتا (Big Data) عبارتی است که برای توصیف مقادیر بزرگی از داده (اعم از داده های ساختار یافته و بدون ساختار) استفاده می‌شود. از کلان داده ها می‌توان برای استخراج اطلاعات مورد نیاز برای تصمیم گیری‌های مهم و حیاتی استفاده کرد و حرکات استراتژیک و حساس را با دقت بیشتری اجرا نمود. یک دانشمند داده به کمک کلان داده‌ها نه تنها قادر به تجزیه و تحلیل نیازهای افراد می‌باشد بلکه از قوانین حاکم بر بازارها و روندهای مختلف نیز اطلاع می‌یابد. تحلیل مقادیر زیادی داده، بدون هیچ گونه سیستم هوشمند و تنها به وسیله انسان امکان پذیر نیست. زیرا هم حجم داده بسیار گسترده است و هم هر روز بر میزان این حجم افزوده می‌شود. بنابراین مشخص است که با استفاده از هوش مصنوعی در تفسیر کلان داده‌ها است که به بسیاری از مفاهیم جدید می‌رسیم که نتیجه‌اش قابلیت متحول کردن بخش عظیمی از جامعه و زندگی انسان‌ها را دارد.

ممنون تا اینجا مطلب با من علی قنبری همراه بودید. من و میتونید در شبکه‌های اجتماعی با نام کاربری aliqanbarizade جست و جو و فالو کنید. خلاصه مرسی که هستید.

هوش مصنوعیتکنولوژیآینده نزدیکعلی قنبری زاده
کارشناس ارشد تجارت الکترونیک، یه فریلنسر طراحی وب در مسیر سوشال مارکتینگ
شاید از این پست‌ها خوشتان بیاید