بهراد ایکس
بهراد ایکس
خواندن ۱۰ دقیقه·۶ سال پیش

آیا هوش مصنوعی باعث نابودی بشر خواهد شد؟

عکس Best Friends از Andy Kelly - ژاپن
عکس Best Friends از Andy Kelly - ژاپن

سوال بزرگیست، به اندازه‌ای بزرگ که باعث به وجود آمدن قطبیدگی هم در حوزه‌ی صنعت و هم در حوزه‌ی آکادمیک شده است. یک قطب بر این عقیده‌است که هوش مصنوعی هر چه باشد، به هر حال تحت کنترل انسان‌ها خواهد بود و قطب دیگر هم معتقد است هوش مصنوعی باعث و بانی جنگ جهانی سوم و انتقراض بشریت خواهد بود. اما به راستی چه عاملی باعث به وجود آمدن این قطبیدگی شده است؟

(برای مشاهده‌ی برخی از محتوای این صفحه باید به اینترنت آزاد متصل باشید.)


اما قبل از این که وارد خود بحث بشویم، نیاز به دانستن اندکی پیش‌زمینه داریم.

پیش ‌در‌آمدی بر هوش مصنوعی

از لحظه‌ای که آلن تیورینگ رویای ماشین محاسبه‌گر را به واقعیت تبدیل کرد، بحث‌های بسیاری درباره‌ی هوش مصنوعی شکل گرفت. به صورت خلاصه، هوش مصنوعی یعنی یافتن روشی که بتوان مفاهیمی که توسط انسان آموخته می‌شوند را به ماشین یاد دهیم و ماشین (همانند انسان) قدرت تصمیم‌گیری داشته باشد. (بخوانید: آزمون تیورینگ)

یادگیری ماشینی به سه بخش تقسیم شده.

  • یادگیری نظارتی، یا این که شما خود داده و عنوان داده را دارید و ماشین می‌تواند نظم موجود بین داده‌ها و نوع و عنوان آنها را کشف کند. (برای مثال، تعیین قیمت ملک بر اساس موقعیت مکانی)
  • یادگیری غیرنظارتی، یا پیدا کردن نظم موجود بین چند داده‌ی بدون عنوان و مرتب کردن آنها بر اساس شباهت‌ها. (برای مثال، سیستم توصیه‌گر بخش explore در اینستاگرام)
  • یادگیری‌ نیمه‌نظارتی، یا ترکیبی از دو روش بالا. بدین معنا که شما عنوان بعضی از داده‌ها را دارید و بعضی داده‌ها را خیر.

چیزی که واضح است، این است که زیربنا برای ساختن چنین ماشینی، داده و تحلیل آماری، یا به عبارت خلاصه «داده‌کاوی» است و در طی نیم قرن گذشته، روش‌های بسیاری برای این کار ابداع شده‌اند؛ از درخت تصمیم و رگرسیون خطی تا شبکه‌های عصبی کانولوشنی.

عکس از جنگ‌های صلیبی
عکس از جنگ‌های صلیبی

آیا تاکنون از خود پرسیده‌اید که ریچارد‌ِ شیردل چگونه قلعه‌ی خود را مدیریت می‌کرد؟! (ببینید: مد‌های بهبود‌دهنده‌ی هوش مصنوعی بازی جنگ‌های صلیبی)

توانِ هوش مصنوعی

(بر اساس کتاب Superintelligence) هوش مصنوعی به لحاظ قدرت تصمیم‌گیری و توان به سه دسته (با به تعبیر بهتر، دوره) تقسیم می‌شود. دوره‌ی اول (که هم‌اکنون در این دوره قرار داریم) AI نام دارد، دوره‌ای که در آن تلاش می‌کنیم تا با مسائلی که در اطراف خود می‌بینیم، همانند مسائل بهینه‌سازی برخورد کنیم و با روش‌های ریاضی برای آنها راه‌حل پیدا کنیم. نقطه‌ی قوت کامپیوتر نسبت به ما انسان‌ها در سرعت پردازش داده‌هاست و ما هم تلاش می‌کنیم تا از این نقطه‌ی قوت برای توسعه‌ی الگوریتم‌های یادگیری ماشین استفاده کنیم. اشتباه‌ نکنید، هر الگوریتمی که برای یادگیری ماشین نوشته‌ می‌شود از جنس توابع ریاضی‌ست و هیچ اتفاق عجیب و غریبی در آن نمی‌افتد! تنها مقادیر عظیمی از محاسبات توسط رایانه صورت می‌گیرد. ما در این دوره قادر هستیم با استفاده از همین الگوریتم‌ها انسان را (خودمان را!) در بسیاری از مسائل و مشکلات شکست دهیم.

دوره‌ی دوم، دوره‌ی هوشِ عمومیِ مصنوعی (Artificial General Intelligence یا به صورت مخفف، AGI) نام دارد. در این دوره یک ماشین هوشمند قادر خواهد بود هر کار فکری که انسان قادر به انجام آن هست را انجام دهد و به عبارت بهتر، هوش ماشین هم ارز هوش انسان خواهد بود. تست‌های مختلفی برای این کار تعریف شده (مانند آزمون تیورینگ) و ما موقعی به نقطه‌ی هوش عمومی می‌رسیم که این تست‌ها را با موفقیت پشت سر بگذاریم ولی جالب است بدانید که ما حداقل 2 دهه تا این نقطه فاصله داریم. مشکلات پیش روی ما زیاداند (و در ادامه هم به این موضوع پرداخته شده) اما چیزی که ما را نگران می‌کند این دوره نیست، بلکه دوره‌ی سوم است.

دوره‌ی سوم، دوره‌ای فرضیه‌ایست تحت عنوان فراهوش (Superintelligence) که در آن هوش ماشین از هوش انسان پیشی می‌گیرد، بنابراین ماشین می‌تواند بدون نیاز به انسان خود را بهبود دهد و ما با پدیده‌ای تحت عنوان انفجار هوش مواجه خواهیم شد. این نظریه توسط نیک باستروم (Nick Bostrom)، استاد دانشگاه آکسفورد ارائه شده و این نظریه را در کتابش تحت عنوان Superintelligence نقد و تحلیل کرده است. او معتقد است که ضعف انسان در مدیریت تکینگی فناوری، باعث انقراض نسل بشر خواهد شد. چه از روی قصد و چه از روی سهو! برای مثال ممکن است ما از یک ماشین فراهوشمند بخواهیم تا گرسنگی را در جهان برطرف کند، در یک سناریو ماشین می‌تواند با کشتن انسان‌های گرسنه، گرسنگی را خاتمه دهد!

اگر برای شما فکر کردن به چیزی به چنین پدیده‌ای دیوانه‌وار به نظر می‌رسد، به خاطر آورید که جان فون نیومن و برتراند راسل از حمله‌ی اتمی آمریکا به شوروی (برای جلوگیری از دستیابی شوروی به سلاح هسته‌ای) حمایت کردند! یا به حمله‌ی اتمی آمریکا به هیروشیما و ناکازاکی فکر کنید. برای چنین مواردی، مصلحت اندیشی انسان به نفع «همه‌»ی بشریت تمام نشده! پس این اتفاق می‌تواند توسط ماشین هم بیفتد...

اگر شما هم (مثل من) خوره‌ی فیلم‌های علمی-تخیلی (Sci-fi) باشید، حتمن دستیار HAL 9000 در فیلم 2001: A Space Odyssey را به خاطر دارید. ایده‌ی هوش مصنوعیِ عمومی باعث ایجاد جرقه‌ی طراحی دستیار HAL 9000 توسط استنلی کوبریک و آرتور کلارک شد.

I'm sorry Dave, I'm afraid I can't do that...
I'm sorry Dave, I'm afraid I can't do that...



خطرات هوش مصنوعی

هوش مصنوعی به طور عمده در دو بخش می‌تواند ما را به خطر بیندازد:

  • مورد اول: برای مواقعی که از هوش مصنوعی برای انجام مأموریت‌های مخرب استفاده می‌شود. سلاح‌های خودکار که برای کشتار انسان‌ها برنامه‌نویسی می‌شوند. چنین سلاح‌هایی به سادگی فشردن یک دکمه غیرفعال نخواهند شد، چرا که کشور‌ها و شرکت‌های سازنده‌ی چنین سلاح‌هایی نمی‌خواهند سلاح‌ها به سادگی غیرفعال شوند. یا برای درک بهتر ماشینی را فرض کنید که از داده‌های خود برای تولید اخبار جعلی استفاده می‌کند. (اگر به تاثیر اخبار فیک بر جامعه اعتقاد ندارید، حتمن پادکست پساحقیقت از استرینگ‌کست را گوش کنید تا ببینید اخبار فیک چگونه می‌تواند باعث رئیس‌جمهور شدن دونالد ترامپ شود!)
  • مورد دوم: هوش مصنوعی مأمور به انجام کاری مفید می‌شود ولی برای انجام دادن این کار مفید، کاری مخرب انجام می‌دهد. مثال خاتمه‌ی گرسنگی در بالا نمونه‌ای از این موارد است. آیا ما و ماشین‌ها به درک مشترک می‌رسیم؟!

هشدار‌های هاوکینگ، ماسک و گیتس هم بیشتر در این حوزه‌ها هستند. این خطرات ما را با این پرسش روبرو می‌سازد که آیا ما قادر به کنترل هوش مصنوعی خواهیم بود؟ ما هنوز جواب روشنی برای این پرسش‌ نداریم. برای درک بهتر این پاسخ، باید ابتدا موانع ما در راه رسیدن به تکینگی را بشناسیم.


موانع، در سر راه هوش مصنوعی عمومی (تکینگی)

مانع اول: الگوریتمِ جامعِ یادگیری

پدرو دومینگوز (Pedro Domingos) در کتاب The Master Algorithm این باور را شرح می‌دهد که در راه رسیدن به تکینگی، ابتدا باید الگوریتمی را کشف کنیم که بدون نظارت انسان قادر به یادگیری باشد. او در کتابش شکل پایین را آورده و در توضیحش می‌نویسد که این اَبَرالگوریتم باید بتواند همه‌ی شاخه‌های هوش مصنوعی را به هم ربط دهد.

آیا رسیدن به چنین الگوریتمی ممکن است؟ ما باز هم پاسخ روشنی به این پرسش‌ نداریم.

مانع دوم: توان پردازش داده‌ها

دستگاه هوشمند باید بتواند ترابایت‌ها داده‌ را پردازش کند. پردازش این حجم از داده (با سخت‌افزار‌های فعلی) ممکن است سال‌ها (و یا حتی قرن‌ها) طول بکشد، چرا که الگوریتم‌های یادگیریِ فعلی آنقدرها هم که فکرش را می‌کنید بهینه نیستند. از طرف دیگر ما هنوز الگوریتم جامع را کشف نکرده‌ایم ولی می‌توان گفت که آن الگوریتم‌ هم آنقدر‌ها که فکرش را می‌کنیم بهینه نخواهد بود! پس در نتیجه ابزار‌های فعلی ما برای پردازش این حجم از داده‌ها کافی نیستند. مطالعات آماری به ما می‌گویند که در سال 2030 به سخت‌افزار لازم برای چنین پردازشی دست خواهیم یافت. ولی این این سخت‌افزار از چه نوع خواهد بود؟ پردازنده‌ی کوانتومی؟ آیا می‌توانیم این سخت‌افزار‌ها را در ابعاد کوچک نیز تولید کنیم؟ ما جواب روشنی به این پرسش نداریم.

مانع سوم: مسئله‌ی آگاهی (Consciousness)

موقعی که شما Call of Duty بازی می‌کنید، شما فردی هستید که سرباز را کنترل می‌کند؛ شما از دریچه‌ی کامپیوترتان آن سرباز را کنترل می‌کنید. چه چیزی ما را کنترل می‌کند؟ این پرسشی‌ست که فلاسفه هم بار‌ها آن را تکرار کرده‌اند؛ منشاء آگاهی بشر چیست؟ چه نیرویی ما را کنترل می‌کند؟ آیا ما واقعاً مختاریم؟

آیا ما می‌توانیم ماشینِ آگاه تولید کنیم؟ ماشینی که با استقلال کامل از انسان، توانایی فکر کردن و تصمیم‌گیری داشته باشد و برای کنترل شدن محتاج انسان نباشد.

در پایان فصل اول سریال وست‌ورلد، پس از آن که دلورس هزارتو (maze) را کشف می‌کند و از برنارد درباره‌ی آن می‌پرسد، برنارد در جواب به او می‌گوید که: «تو یک ربات نیستی، تو انسانی.» منظور برنارد این بود که دلورس موجودی بی‌روح نیست، بلکه آگاهی دارد.
در پایان فصل اول سریال وست‌ورلد، پس از آن که دلورس هزارتو (maze) را کشف می‌کند و از برنارد درباره‌ی آن می‌پرسد، برنارد در جواب به او می‌گوید که: «تو یک ربات نیستی، تو انسانی.» منظور برنارد این بود که دلورس موجودی بی‌روح نیست، بلکه آگاهی دارد.


ما دهه‌هاست که درگیر شناخت ریشه‌ی آگاهی در خودمان هستیم و حدود 20000 مقاله‌ هم در این باره نوشته‌ایم ولی حتی 1٪ هم به پاسخ نزدیک نشده‌ایم! دیدن این ویدئو از Michio Kaku شما را بیشتر و بهتر با مسئله آشنا می‌کند.

https://www.youtube.com/watch?v=iONlo9WcKgQ



نتیجه‌گیری

شاید تصورات فعلی ما از آینده‌ی هوش مصنوعی روشن و خوش‌بینانه نباشد، ولی باید در نظر داشته باشیم که ما دهه‌ها و قرن‌ها تا رسیدن به آن نقطه فاصله داریم. ما هنوز پاسخ‌های روشنی به پرسش‌هایی بزرگ همچون آگاهی را نیافته‌ایم و راه بسیار طولانی‌ای تا آن نقطه باقی مانده.

این جدول تصویر روشنی را از مسئله‌ی هوش مصنوعی به ما ارائه می‌دهد.
این جدول تصویر روشنی را از مسئله‌ی هوش مصنوعی به ما ارائه می‌دهد.

نکته‌ای که باید به آن توجه داشت این است که هوش مصنوعی (حداقل تا امروز) فواید زیادی برای ما داشته و پس از تکینگی هم این چنین خواهد بود؛ پس بهتر است تنها از بعدِ بدبینی به ماجرا نگاه نکنیم.


شاید خواندن این پست‌ها هم برای شما جذاب باشد:

https://futureoflife.org/background/benefits-risks-of-artificial-intelligence/?cn-reloaded=1


لطفا این پست را با دوستانتان به اشتراک بگذارید و حتما نظرتان را راجع به این پست بگویید.

ممنون بابت وقتتان.

هوش مصنوعییادگیری ماشینیآگاهی
مکاترونیک‌دانِ علاقه‌مند به علومِ جدید، فلسفه، اقتصاد و سیاست. BehradX.ir
دیتا‌آی‌او، یک وبلاگ اجتماعی از متخصصین علوم داده، یادگیری ماشین، کلان داده، پردازش تصویر، صوت و ویدیو است که تجربیات و آموخته‌های خود را در قالب نوشته در این وبلاگ منتشر می‌کنند.
شاید از این پست‌ها خوشتان بیاید