آموزشگاه برنامه نویسی
آموزشگاه برنامه نویسی
خواندن ۸ دقیقه·۲ سال پیش

هنگام مقایسه شبکه های عصبی با مغز احتیاط کنید...

آموزش ماشین لرنینگ
آموزش ماشین لرنینگ


سیستم‌های محاسباتی که به نظر می‌رسد فعالیت‌هایی شبیه مغز ایجاد می‌کنند، ممکن است نتیجه هدایت محققان به سمت یک نتیجه خاص باشد. شبکه‌های عصبی، نوعی از سیستم محاسباتی که بر اساس سازمان‌دهی مغز انسان مدل‌سازی شده‌اند، اساس بسیاری از سیستم‌های هوش مصنوعی را برای کاربردهایی مانند تشخیص گفتار، بینایی رایانه و تجزیه و تحلیل تصویر پزشکی تشکیل می‌دهند.

در زمینه علوم اعصاب، محققان اغلب از شبکه‌های عصبی استفاده می‌کنند تا سعی کنند همان نوع وظایفی را که مغز انجام می‌دهد مدل‌سازی کنند، به این امید که مدل‌ها بتوانند فرضیه‌های جدیدی را در رابطه با نحوه انجام آن وظایف توسط مغز ارائه دهند. با این حال، گروهی از محققان MITتاکید می کنند که در تفسیر این مدل ها باید احتیاط بیشتری کرد. شما باید بدانید که پیش از هر چیز نیاز به داشتن دانش اصولی در زمینه ماشین لرنینگ ، زبان پایتون و کتابخانه هایی دارید مانند تنسرفلو که در زمینه هوش مصنوعی مورد استفاده قرار می گیرند.

در تجزیه و تحلیل بیش از 11000 شبکه عصبی که برای شبیه‌سازی عملکرد سلول‌های شبکه - اجزای کلیدی سیستم ناوبری مغز - آموزش دیده بودند، دریافتند که شبکه‌های عصبی تنها زمانی فعالیت سلول‌های شبکه‌ای تولید می‌کنند که محدودیت‌های بسیار خاصی به آنها داده شود که در سیستم های بیولوژیکی یافت نمی شوند. تیم MIT دریافت که تعداد بسیار کمی از شبکه‌های عصبی فعالیت‌های شبکه‌ای سلول‌مانند را ایجاد می‌کنند، که نشان می‌دهد این مدل‌ها لزوماً پیش‌بینی‌های مفیدی درباره نحوه عملکرد مغز ایجاد نمی‌کنند.

شفر، که اکنون دانشجوی کارشناسی ارشد علوم کامپیوتر در دانشگاه استنفورد است، نویسنده اصلی این مطالعه جدید است که در کنفرانس 2022 سیستم های پردازش اطلاعات عصبی ارائه خواهد شد. ایلا فیته، استاد علوم مغز و عصب شناسی و عضو موسسه تحقیقات مغز مک گاورن MIT، نویسنده ارشد این مقاله است. میکائیل خونا، دانشجوی کارشناسی ارشد MITدر رشته فیزیک، نیز عضو نویسندگان است.

مدل سازی سلول های شبکه

شبکه های عصبی، که محققان برای چندین دهه از آن برای انجام انواع وظایف محاسباتی استفاده می کنند، از هزاران یا میلیون ها واحد پردازشی متصل به یکدیگر تشکیل شده است. هر گره دارای اتصالاتی با نقاط قوت متفاوت با گره های دیگر در شبکه است. همانطور که شبکه مقادیر عظیمی از داده ها را تجزیه و تحلیل می کند، نقاط قوت آن اتصالات تغییر می کند زیرا شبکه انجام وظیفه مورد نظر را یاد می گیرد.

در این مطالعه، محققان بر روی شبکه‌های عصبی که برای تقلید عملکرد سلول‌های شبکه‌ای مغز که در قشر داخلی مغز پستانداران یافت می‌شوند، توسعه یافته‌اند، تمرکز کردند. همراه با سلول‌های مکانی که در هیپوکامپ یافت می‌شوند، سلول‌های شبکه‌ای یک مدار مغزی را تشکیل می‌دهند که به حیوانات کمک می‌کند بدانند کجا هستند و چگونه به مکان دیگری حرکت کنند.

طبق تحقیقات نشان داده شده است که سلول‌های مکانی هر زمان که یک حیوان در یک مکان خاص باشد شلیک می‌کنند و هر سلول مکانی ممکن است به بیش از یک مکان پاسخ دهد. از طرف دیگر سلول های شبکه ای بسیار متفاوت عمل می نمایند. هنگامی که یک حیوان در فضایی مانند اتاق حرکت می کند، سلول های شبکه تنها زمانی شلیک می کنند که حیوان در یکی از رئوس یک شبکه مثلثی باشد.

گروه های مختلف سلول های شبکه؛ شبکه هایی با ابعاد کمی متفاوت ایجاد می کنند که روی یکدیگر همپوشانی دارند. این مسئله به سلول های شبکه اجازه می دهد تا با استفاده از تعداد نسبتاً کمی سلول، تعداد زیادی موقعیت منحصر به فرد را رمزگذاری کنند. این نوع رمزگذاری مکان همچنین امکان پیش بینی مکان بعدی حیوان را بر اساس یک نقطه شروع و یک سرعت مشخص می کند. در چندین مطالعه اخیر، محققان شبکه های عصبی را برای انجام همین کار، که به عنوان یکپارچه سازی مسیر شناخته می شود، آموزش داده اند.

برای آموزش شبکه های عصبی برای انجام این کار، محققان نقطه شروع و سرعتی را که در طول زمان تغییر می کند به آن وارد می کنند. این مدل اساساً فعالیت یک حیوان در حال پرسه زدن در یک فضا را تقلید می کند و موقعیت های به روز شده را هنگام حرکت محاسبه می کند. همانطور که مدل کار را انجام می دهد، الگوهای فعالیت واحدهای مختلف در شبکه قابل اندازه گیری است. فعالیت هر واحد را می توان به عنوان یک الگوی شلیک، شبیه به الگوهای شلیک سلول های عصبی در مغز نشان داد.

در چندین مطالعه قبلی، محققان گزارش کرده‌اند که مدل‌های آن‌ها واحدهایی با الگوهای فعالیت تولید می‌کنند که الگوهای شلیک سلول‌های شبکه‌ای را از نزدیک تقلید می‌کنند. این مطالعات به این نتیجه رسیدند که نمایش های شبکه مانند سلول به طور طبیعی در هر شبکه عصبی آموزش دیده برای انجام وظیفه یکپارچه سازی مسیر ظاهر می شوند.

با این حال، محققان MIT به نتایج بسیار متفاوتی دست یافتند. در تجزیه و تحلیل بیش از 11000 شبکه عصبی که در مورد یکپارچه سازی مسیر آموزش داده بودند، دریافتند که در حالی که تقریبا 90 درصد از آنها این کار را با موفقیت یاد گرفته اند، تنها حدود 10 درصد از آن شبکه ها الگوهای فعالیتی را تولید می کنند که می تواند به عنوان سلول-شبکه طبقه بندی شود. این مورد شامل شبکه‌هایی می‌شود که در آن‌ها حتی تنها یک واحد امتیاز شبکه بالایی را به دست آورده است.

به گفته تیم MIT، احتمالاً مطالعات قبلی تنها به دلیل محدودیت‌هایی که محققان در آن مدل‌ها ایجاد می‌کنند، فعالیت‌هایی شبیه سلول شبکه ایجاد می‌کنند.

مطالعات قبلی این داستان را ارائه کرده‌اند که اگر شبکه‌ها را برای یکپارچه‌سازی مسیرها آموزش دهید، سلول‌های شبکه را دریافت خواهید کرد. چیزی که ما دریافتیم این است که در عوض، شما باید این توالی طولانی از انتخاب پارامترها را انجام دهید، که می دانیم با زیست شناسی ناسازگار هستند، و سپس در بخش کوچکی از این پارامترها، نتیجه دلخواه را خواهید گرفت.

مدل های بیولوژیکی بیشتر

یکی از محدودیت‌هایی که در مطالعات قبلی یافت شد این است که محققان از مدل خواسته بودند تا سرعت را به یک موقعیت منحصربه‌فرد تبدیل کند که توسط یک واحد شبکه که مربوط به یک سلول مکانی گزارش شده است. برای اینکه این اتفاق بیفتد، محققان همچنین نیاز داشتند که هر سلول مکانی فقط با یک مکان مطابقت داشته باشد، که نحوه عملکرد سلول های مکان بیولوژیکی نیست: مطالعات نشان داده اند که سلول های مکانی در هیپوکامپ می توانند به 20 مکان مختلف پاسخ دهند، نه فقط یک مکان.

وقتی تیم MIT مدل‌ها را طوری تنظیم کرد که سلول‌های مکانی بیشتر شبیه سلول‌های مکان بیولوژیکی باشند، مدل‌ها همچنان می‌توانستند وظیفه یکپارچه‌سازی مسیر را انجام دهند، اما دیگر فعالیت سلول‌های شبکه‌ای تولید نمی‌کردند. فعالیت شبه سلول‌های شبکه‌ای نیز زمانی ناپدید شد که محققان به مدل‌ها دستور دادند تا انواع مختلفی از خروجی مکان را تولید کنند، مانند موقعیت مکانی روی یک شبکه با محورهای Xو Y یا مکان به عنوان فاصله و زاویه نسبت به یک نقطه اصلی.

فیتی می‌گوید: «اگر تنها کاری که از این شبکه می‌خواهید انجام دهد یکپارچه‌سازی مسیر است، و مجموعه‌ای از الزامات بسیار خاص و نه فیزیولوژیکی را بر واحد بازخوانی تحمیل می‌کنید، در این صورت می‌توانید سلول‌های شبکه را به دست آورید. اما اگر هر یک از این جنبه‌های این واحد بازخوانی را آرام کنید، به شدت توانایی شبکه برای تولید سلول‌های شبکه را کاهش می‌دهد. در واقع، معمولاً این کار را نمی‌کنند، حتی اگر هنوز وظیفه یکپارچه‌سازی مسیر را حل می‌کنند.»

بنابراین، اگر محققان قبلاً از وجود سلول‌های شبکه‌ای اطلاع نداشتند و مدل را برای تولید آنها راهنمایی نمی‌کردند، بسیار بعید بود که آنها به عنوان یک پیامد طبیعی آموزش مدل ظاهر شوند. محققان می گویند که یافته های آنها نشان می دهد که هنگام تفسیر مدل های شبکه عصبی مغز، احتیاط بیشتری لازم است.

وقتی از مدل‌های یادگیری عمیق (deep learning) استفاده می کنید، آنها می‌توانند ابزار قدرتمندی باشند، اما باید در تفسیر آنها و تعیین اینکه آیا واقعاً پیش‌بینی‌های جدید انجام می‌دهند یا حتی به آنچه که مغز در حال بهینه‌سازی است، بسیار محتاط بود. کنت هریس، استاد علوم اعصاب کمی در دانشگاه کالج لندن، می‌گوید امیدوار است این مطالعه جدید دانشمندان علوم اعصاب را تشویق کند که در بیان آنچه می‌توانند با تشابهات بین شبکه‌های عصبی و مغز نشان دهند، مراقب باشند.

شبکه های عصبی می توانند منبع مفیدی برای پیش بینی ها باشند. اگر می‌خواهید یاد بگیرید که چگونه مغز یک محاسبات را حل می‌کند، می‌توانید شبکه‌ای را برای انجام آن آموزش دهید، سپس این فرضیه را آزمایش کنید که مغز به همان روش کار می‌کند. هریس که در این مطالعه شرکت نداشت، می‌گوید چه این فرضیه تأیید شود یا نه، چیزی یاد خواهید گرفت. این مقاله نشان می‌دهد که «پیش‌بینی» قدرت کمتری دارد: شبکه‌های عصبی پارامترهای زیادی دارند، بنابراین واداشتن آنها به تکرار یک نتیجه موجود چندان تعجب‌آور نیست.

به گفته محققان MIT، هنگام استفاده از این مدل‌ها برای پیش‌بینی نحوه عملکرد مغز، مهم است که هنگام ساخت مدل‌ها، محدودیت‌های بیولوژیکی واقعی و شناخته شده را در نظر بگیریم. آنها اکنون روی مدل‌هایی از سلول‌های شبکه کار می‌کنند که امیدوارند پیش‌بینی‌های دقیق‌تری از نحوه عملکرد سلول‌های شبکه‌ای در مغز ایجاد کنند.

Khona می‌گوید: «مدل‌های یادگیری عمیق به ما بینشی در مورد مغز می‌دهند، اما تنها زمانی که دانش بیولوژیکی زیادی را به مدل تزریق کنید. اگر از محدودیت‌های صحیح استفاده کنید، مدل‌ها می‌توانند راه‌حلی شبیه به مغز به شما ارائه دهند.»

این تحقیق توسط دفتر تحقیقات نیروی دریایی، بنیاد ملی علوم، بنیاد سیمونز از طریق همکاری سیمونز بر روی مغز جهانی، و موسسه پزشکی هوارد هیوز از طریق برنامه دانش پژوهان دانشکده تامین شد.

شبکه‌های عصبیماشین لرنینگماشین لرنینگ با پایتونپایتونآموزش پایتون
شاید از این پست‌ها خوشتان بیاید