انجمن علمی مهندسی صنایع دانشکده فنی مهندسی گلپایگان
انجمن علمی مهندسی صنایع دانشکده فنی مهندسی گلپایگان
خواندن ۹ دقیقه·۱ سال پیش

هوش مصنوعی

در قسمت اول با تعاریف مقدماتی هوش مصنوعی آشنا شدیم ؛حال به توضیحاتی دقیق تر در این باره می پردازیم .
آنچه در این بخش با آن آشنا می شویم :

  • سطوح مختلف هوش مصنوعی
  • هوش مصنوعی چگونه آموزش می‌بیند؟
  • دسته بندی سیستم‌های هوش مصنوعی


یک سیستم هوش مصنوعی بر اساس آن چه که از دنیای بیرون درک می‌کند و می‌تواند به آن پاسخ دهد، دارای سه سطح می‌باشد. هوش مصنوعی محدود، هوش مصنوعی عمومی و سوپر هوش مصنوعی.در ادامه هر کدام را به صورت مفصل توضیح می‌دهیم.


۱.هوش مصنوعی محدود (artificial narrow intelligence) :

در تاریخچه هوش مصنوعی ، هوش مصنوعی محدود بسیار زودتر از انواع دیگر هوش مصنوعی پدید آمده است. این روزها نمونه های هوش مصنوعی محدود بسیار دیده می شوند . برای مثال : رایانه‌هایی که در بازی های پیچیده‌ای مانند شطرنج ، تصمیم گیری هوشمندانه در زمینه تجارت و انواع دیگر کارهای مهم ، توانسته‌اند بهتر از انسان عمل کنند؛نمونه‌هایی از هوش مصنوعی محدود هستند. زمانی که در مورد هوش مصنوعی محدود صحبت می‌کنیم منظورمان سیستم‌های هوشمندی است که در انجام دادن یک وظیفه (task)  بهتر از انسان عمل می‌کنند. برای مثال : سیستم هوشمندی که می‌تواند به صورت خودکار گفتار را به نوشتار تبدیل کند یا سیستم‌های تشخیص چهره که قادرند هویت یک فرد را حتی در شلوغی و سیل عظیمی از جمعیت تشخیص دهند. اگر بخواهیم برخی از کاربرد‌های هوش مصنوعی محدود را مثال بزنیم، عبارت اند از:

  • اتومبیل های خودران که به کمک هوش مصنوعی یاد می‌گیرند که چگونه رانندگی کنند.
  • سیستم‌های پردازش تصویر و تشخیص چهره که می‌توانند کارهای بسیاری را انجام دهند و عملیات تشخیص هویت افراد را انجام دهند.
  • سیستم‌های هوش مصنوعی که به انجام فرآیندهای مالی در بانک‌ها و سایر کسب و کارهای مالی کمک می‌کند.
  • دستیارهای هوشمند که بر اساس نیازهایتان به شما کمک می‌کنند و حتی پروازها و هتل هایتان را از قبل رزرو می‌کنند.


۲.هوش مصنوعی عمومی (Artificial General Intelligence)

منظور از هوش مصنوعی عمومی ماشینی است که می‌تواند دنیای اطراف خود را همانند یک انسان درک کند و دارای ظرفیت و گنجایش مشابه برای انجام فعالیت‌ها و وظایفی است که یک انسان به طور معمول آن‌ها را انجام می‌دهد. در حال حاضر هوش مصنوعی عمومی وجود ندارد اما رد پای آن را می‌توانیم در داستان های دارای ژانر عملی-تخیلی مشاهده کنیم. از نظر تئوری یک هوش مصنوعی عمومی می‌تواند هم سطح انسان فعالیت کند و یا حتی در زمینه‌هایی مانند حافظه و غیره از او بهتر عمل کند.
با این سطح از آگاهی و دانش یک ماشین می‌تواند تمام کارهایی که زمانی بر انسان محول می‌شد را بدون نیاز به وجود او انجام دهد و با گذشت زمان بیشتر ماشین‌های دارای هوش مصنوعی عمومی می‌توانند در بسیاری از زمینه‌ها جای انسان را پر کنند. خاتمه دادن به نیاز حضور نیروی انسانی در بسیاری از کارها و استفاده از تکنولوژی هوش مصنوعی عمومی یا کامل می‌تواند مانند هر تکنولوژی دیگری هر دو جنبه مثبت و منفی در زندگی اجتماعی و فردی انسان‌ها داشته باشد. اما با همه‌ی این‌ها وجود آن ، بسیار مفید و در عین حال اجتناب ناپذیر خواهد بود. به کمک هوش مصنوعی عمومی که دارای توانایی‌ها و ظرفیت‌های زیادی برای کمک به بشریت می‌باشد، بسیاری از مشکلاتی که انسان امروزی با آن سر و کله می‌زند، همانند تغییرات شدید آب و هوایی، حل خواهد شد.

سیستم‌های هوش مصنوعی عمومی می‌تواند از کارهای عادی تا کارهای بسیار مهم و خطیر را به بهترین شکل انجام دهند. در سطح عمومی آن‌ها می‌توانند در کارهایی مثل رانندگی، دستیار شخصی هوشمند با توانایی درک همه‌ی نیازهای کاربر، دستیار پزشک و یا سیستم تشخیص بیماری و غیره حضور داشته باشند . در سطوح بالا این سیستم‌ها می‌توانند کارهایی را انجام دهند که به زندگی و امنیت و جان انسان‌ها بستگی دارد و می‌توانند به خوبی از پس چنین کارهایی بر بیایند.


۳.سوپر هوش مصنوعی(Artificial Super Intelligence)

سوپر هوش مصنوعی در واقع عبارتی است که برای هوش مصنوعی استفاده می‌شود که سطح هوش و درک انسانی را پشت سر گذاشته و به نوعی دارای هوش فرا بشری خواهد شد. تا به حال هنوز هیچ جامعه‌ای نتوانسته به سوپر هوش مصنوعی دست پیدا کند. در حقیقت رسیدن یا نرسیدن و یا حتی زمان رسیدن به آن در حاله‌ای از ابهام می‌باشد. هم چنین این مسئله که چنین هوش مصنوعی چه کارهایی انجام می‌دهد و یا این مسئله که آیا قرار است تهدیدی برای بشر باشد یا فرصتی برای او، هم مبهم است و بسیاری از صاحب نظران نظرات بسیار متفاوتی را در این مورد دارند و بحثی داغ بین صاحبان غول‌های تکنولوژی می‌باشد. برای رسیدن به این سطح از هوش مصنوعی، یک سیستم هوشمند باید تست تورینگ را پشت سر گذاشته باشد و هیچ ماشینی تا به حال به سطحی از درک و شعور و وسعت دانش یک انسان بالغ نرسیده است که از این تست سر بلند بیرون آمده باشد.


هوش مصنوعی چگونه آموزش می‌بیند؟

امروزه سیستم‌های هوش مصنوعی به کمک یادگیری ماشین و یادگیری عمیق ، هوشمند می‌شوند و می‌توانند یاد بگیرند و آموزش ببینند. در ادامه هر کدام را معرفی می‌کنیم.

یادگیری ماشین


یادگیری ماشین (Machine Learning) یکی از زیر مجموعه های هوش مصنوعی است که به سیستم ها این امکان را می دهد تا به صورت خودکار یادگیری و پیشرفت داشته باشند بدون اینکه نیاز داشته باشند که برنامه نویسی مخصوص به آن یادگیری خاص را فرا گیرند . تمرکز اصلی یادگیری ماشینی بر توسعه برنامه‌هایی است که بتوانند با دسترسی به داده‌ها، به طور خودکار از آن‌ها برای یادگیری خود سیستم استفاده کنند.

در یادگیری ماشین فرآیند یادگیری با مشاهدات یا داده ها آغاز می شود و سیستم از مثال ها، تجارب مستقیم و یا دستور العمل ها و.. استفاده می‌کند تا به یک الگو مشخص برسد و بر اساس آن الگو شروع به تصمیم گیری و حل مسئله کند. هدف اصلی یادگیری ماشین آن است که به کامپیوتر اجازه بدهیم که بدون دخالت و کمک انسان به طور اتوماتیک یادگیری داشته باشند و بتواند بر اساس مشاهدات و داده‌ها رفتار خود را تنظیم کند.

الگوریتم های بسیار مختلفی برای یادگیری ماشین وجود دارند و هر روزه صدها الگوریتم جدید نیز در این زمینه تولید می‌شوند. به طور معمول این الگوریتم‌ها به وسیله سبک یادگیری (learning style) (مانند یادگیری نظارت شده، یادگیری بدون نظارت، یادگیری نیمه نظارت) و یا با توجه به شباهتشان در فرم و عملکرد ( مانند طبقه بندی، برگشت، درخت تصمیم گیری، دسته کردن، یادگیری عمیق و…) گروه بندی می شوند. صرف نظر از هر دو گروه‌بندی، تمام الگوریتم های یادگیری ماشین معمولا در زمینه‌های زیر فعالیت می‌کنند:

  • نمایش: مجموعه ای از طبقه بندی کننده ها یا زبانی که کامپیوتر آن را می فهمد.
  • ارزشیابی: همچنین معروف به عملکرد هدف/نمره دهی.
  • بهینه سازی: روش جست و جو؛ اغلب طبقه بندی کننده ای با بالاترین امتیاز.

هدف اساسی الگوریتم‌های یادگیری ماشین ، تفسیر موفقیت آمیز داده‌ها و تعمیم یادگیری‌ها به فراتر از نمونه‌های آموزش داده شده است.

یادگیری عمیق

یادگیری عمیق نوعی از یادگیری ماشین و هوش مصنوعی است که در واقع از روشی که ذهن انسان برای یادگیری موضوع خاصی به کار می‌گیرد، تقلید می‌کند. این نوع از یادگیری یکی از عناصر مهم در علم داده می‌باشد که شامل آمار و مدل سازی پیش بینی است. یادگیری عمیق برای دانشمندان داده که وظیفه جمع آوری ، تجزیه و تحلیل و تفسیر مقادیر زیادی از داده ها را دارند، بسیار کاربردی است و روند تحلیل و تفسیر داده‌ها را سریعتر و آسان تر می کند.
به نوعی می توان گفت یادگیری عمیق در واقع همان یادگیری ماشین است به گونه ای که در سطح کارهای پیچیده، نمایش یا انتزاع، عمل یادگیری را برای یک سیستم هوش مصنوعی انجام می‌دهد و به این صورت ماشین درک بهتری از واقعیت های وجودی پیدا می‌کند و می تواند الگوهای مختلف را شناسایی کند. در ساده ترین سطح، یادگیری عمیق را می توان راهی برای خودکار سازی تجزیه و تحلیل پیش بینی‌ها دانست.
برای شناسایی نحوه کار کرد یادگیری عمیق باید با شبکه‌های عصبی آشنا باشید. این نوع از یادگیری در واقع همانند یادگیری به وسیله شبکه‌های عصبی هستند که دارای لایه پنهان زیادی می‌باشند و هر چقدر در این لایه ها جلو تر بروید به مدل های پیچیده‌تر و کامل‌تری می‌رسید.
پس از دانستن این پاسخ به شرح دسته بندی سیستم های هوش مصنوعی می‌پردازیم.


دسته بندی سیستم‌های هوش مصنوعی

آرنت هینتز، استادیار زیست شناسی تلفیقی و علوم کامپیوتر دانشگاه ایالتی میشیگان، هوش مصنوعی را به چهار دسته کلی تقسیم بندی می کند. این دسته بندی گستره ی سیستم هایی که امروزه وجود دارند تا سیستم های احساسی که هنوز وجود ندارند را در بر می‌گیرد. این دسته ها به شرح زیر هستند:

نوع اول: ماشین های انفعالی

نمونه این دسته deep blue است که یک برنامه شطرنج بود که در دهه ۱۹۹۰ توانست گری کاسپاروف، قهرمان شطرنج جهان را شکست دهد. deep blue می توانست مهره های روی هر خانه شطرنج را شناسایی کند و حرکت های پیش رو را پیش بینی کند. مشکل برنامه آن بود که نمی توانست تجربه های قبلی خود را به یاد بسپارد و از آن برای حرکت های آینده اش استفاده کند. این برنامه هربار تمام حرکت های استراتژیک ممکن خود و رقیب را بررسی و آنالیز می کرد و بهترین آن ها را انتخاب می کرد. این نوع از هوش مصنوعی و برنامه های این چنینی برای هدف های محدودی قابل استفاده هستند و نمی توانند به راحتی در موقعیت های دیگری کاربرد داشته باشند.

نوع دوم: حافظه محدود

این سیستم هوش مصنوعی برعکس قبلی می تواند از تجارب گذشته برای تصمیمات آینده اش استفاده کند. برخی از کارکرد های تصمیم گیری در ماشین های خود ران از این نوع طراحی هستند. این نوع ماشین ها از مشاهداتشان برای تصمیماتی که در آینده ای نه چندان دور می خواهند بگیرند استفاده می کنند. مثلا اینکه لاینی که در آن در حال رانندگی هستند را عوض کنند. البته این نوع مشاهدات و تجربیات به صورت همیشگی ذخیره نمی شوند.

نوع سوم: تئوری ذهن

این نوع از هوش مصنوعی هنوز وجود ندارد اما اساس این عبارت روانشناختی به تمامی اعتقادات و دانش ها، آرزوها و آمال و نیت هر فرد بر می گردد و تاثیری که هر کدام از آن ها بر تصمیم گیری یک فرد دارد. این هوش مصنوعی قادر به درک و آنالیز این نوع از تصمیم گیری ها می باشد.

نوع چهارم: خود آگاهی

در این دسته سیستم هوش مصنوعی خودآگاهی و هوشیاری وجود دارد. ماشین های دارای خود آگاهی می توانند بفهمند که در چه سطح و حالتی هستند و می توانند از اطلاعاتی که به دست می آورند احساسات دیگران را نتیجه گیری کنند. البته این نوع از هوش مصنوعی نیز همانند مورد سوم هنوز وجود ندارد.


گرد آورنده : مینا آذرسا
فهرست منابع :
https://amerandish.com/
https://programstore.ir/
https://sariasan.com/
https://ibnns.net/

مهندسی صنایعهوش مصنوعییادگیری ماشینهوش
صفحه رسمی انجمن علمی مهندسی صنایع دانشکده فنی مهندسی گلپایگان در ویرگول
شاید از این پست‌ها خوشتان بیاید