ویرگول
ورودثبت نام
مصطفی جعفرزاده
مصطفی جعفرزاده
خواندن ۷ دقیقه·۳ ساعت پیش

بهینه‌سازی مدل‌های یادگیری ماشین برای خدمات بازارساز خودکار (AMM) با استفاده از TensorFlow.js و تکنیک‌های پویا

مقدمه

در دنیای بازارهای مالی، اجرای بهینه سفارشها نقش بسیار مهمی در کاهش هزینههای تراکنش و بهبود نتایج سرمایهگذاری دارد. با گسترش استفاده از الگوریتمهای پیچیده و یادگیری ماشین در معاملات، تکنیکهای پیشرفته مانند VWAP (Volume-Weighted Average Price) و مدلهای یادگیری عمیق (Deep Learning) بهطور گسترده برای مدیریت و بهینهسازی اجرای سفارشها استفاده میشوند. این مقاله به بررسی و پیادهسازی ترکیب دو تکنیک VWAP و مدلهای پیشرفته یادگیری عمیق میپردازد. این ترکیب میتواند بهطور مؤثر زمانبندی بهینه برای اجرای سفارشات را پیدا کرده و تأثیر لغزش قیمت را به حداقل برساند. همچنین، معماری بهبودیافته کد برای رسیدن به کارایی و امنیت بهتر نیز مورد بحث قرار میگیرد.

*نکته مهم: در تهیه این مقاله از هوش مصنوعی کمک گرفته شده است

کد اصلی Hybrid Order Execution Service


import { Injectable } from '@nestjs/common';
import axios from 'axios'; // For communication with the model inference microservice
import * as Redis from 'redis'; // For caching market data
import * as winston from 'winston'; // For advanced logging
// Initialize Redis client
const redisClient = Redis.createClient();
@Injectable()
export class HybridOrderExecutionService {
private logger: winston.Logger;
constructor() {
// Setup advanced logging
this.logger = winston.createLogger({
level: 'info',
format: winston.format.json(),
transports: [
new winston.transports.Console(),
new winston.transports.File({ filename: 'execution-logs.log' }),
],
});
}
// Main function to execute orders
async executeOrder(orderType: 'buy' | 'sell', quantity: number, marketData: any) {
try {
// Step 1: Fetch and enrich market data
const enrichedMarketData = await this.getCachedMarketData();
Object.assign(enrichedMarketData, marketData);
// Step 2: Call the model inference microservice
const response = await axios.post('http://model-inference-service:8000/predict', enrichedMarketData);
const { strategy } = response.data;
// Step 3: Initialize the Market Simulator
const simulator = new MarketSimulator(enrichedMarketData.currentPrice, 0.02); // Example volatility
// Step 4: Execute the chosen strategy with market impact simulation
let executionResult;
switch (strategy) {
case 'VWAP':
executionResult = this.executeVWAP(orderType, quantity, simulator);
break;
case 'TWAP':
executionResult = this.executeTWAP(orderType, quantity, simulator);
break;
default:
throw new Error('Invalid strategy selected');
}
// Step 5: Log the execution details
this.logger.info(`Order executed: ${JSON.stringify(executionResult)}`);
// Step 6: Return the execution result
return { success: true, executedPrice: executionResult.price, details: executionResult.details };
} catch (error) {
this.logger.error(`Execution error: ${error.message}`);
return { success: false, executedPrice: 0, details: error.message };
}
}
// Helper function to get cached market data or fetch new data
private async getCachedMarketData() {
return new Promise((resolve, reject) => {
redisClient.get('marketData', async (err, data) => {
if (err) return reject(err);
if (data) return resolve(JSON.parse(data));
try {
const response = await axios.get('https://api.exchange.com/market-data'); // Replace with a real API
const marketData = response.data;
redisClient.setex('marketData', 60, JSON.stringify(marketData)); // Cache for 60 seconds
resolve(marketData);
} catch (apiError) {
reject(`Failed to fetch market data: ${apiError.message}`);
}
});
});
}
// Execute VWAP strategy
private executeVWAP(orderType: 'buy' | 'sell', quantity: number, simulator: MarketSimulator) {
const simulatedPrice = simulator.assessPriceImpact(quantity);
return { strategy: 'VWAP', price: simulatedPrice, details: { orderType, quantity } };
}
// Execute TWAP strategy
private executeTWAP(orderType: 'buy' | 'sell', quantity: number, simulator: MarketSimulator) {
const simulatedPrice = simulator.assessPriceImpact(quantity);
return { strategy: 'TWAP', price: simulatedPrice, details: { orderType, quantity } };
}
}


کلاس شبیهساز بازار (Market Simulator Class)


class MarketSimulator {
private currentPrice: number;
private volatility: number;
constructor(initialPrice: number, volatility: number) {
this.currentPrice = initialPrice;
this.volatility = volatility;
}
// Simulate a single price movement using Geometric Brownian Motion
simulatePriceMovement(): number {
const dt = 1 / 252; // One day in trading year
const randomShock = Math.random() * Math.sqrt(dt) * this.volatility;
this.currentPrice *= Math.exp(randomShock - (0.5 * this.volatility ** 2) * dt);
return this.currentPrice;
}
// Assess price impact using empirical impact models
assessPriceImpact(orderSize: number): number {
const temporaryImpact = 0.01 * Math.sqrt(orderSize / 1e6); // Example formula
const permanentImpact = 0.001 * orderSize / 1e6; // Example formula
return this.currentPrice * (1 + temporaryImpact + permanentImpact);
}
}


میکرو سرویس برای استنتاج مدل (Model Inference Microservice)
python
from fastapi import FastAPI
import tensorflow as tf
from ml_random_forest import RandomForestClassifier
from ml_xgboost import XGBoost
app = FastAPI()
Load models
random_forest_model = RandomForestClassifier(n_estimators=100)
boosting_model = XGBoost()
@app.post("/predict")
async def predict(market_data: dict):
Prepare input features
input_features = list(market_data.values())
Run model predictions
rf_prediction = random_forest_model.predict([input_features])[0]
boosting_prediction = boosting_model.predict([input_features])[0]
Combine predictions
combined_score = (rf_prediction + boosting_prediction) / 2
strategy = "VWAP" if combined_score > 0.5 else "TWAP"
return {"strategy": strategy}



Intelligent VWAP Service


// NestJS Service for Intelligent VWAP Execution with Advanced Deep Learning and Security
import { Injectable } from '@nestjs/common';
import * as tf from '@tensorflow/tfjs-node'; // TensorFlow for Deep Learning
import axios from 'axios'; // For fetching real-time market data
import * as Redis from 'redis'; // For caching and performance optimization
import * as winston from 'winston'; // For advanced logging
import * as https from 'https'; // For secure API calls
// Define Interface for Order Execution
interface OrderExecutionResult {
success: boolean;
executedPrices: number[];
averageExecutedPrice: number;
details: any;
}
// Initialize Redis client for caching
const redisClient = Redis.createClient();
const httpsAgent = new https.Agent({ keepAlive: true }); // Use HTTPS for secure connections
@Injectable()
export class IntelligentVWAPService {
private logger: winston.Logger;
private model: tf.LayersModel;
constructor() {
// Setup advanced logging
this.logger = winston.createLogger({
level: 'info',
format: winston.format.json(),
transports: [
new winston.transports.Console(),
new winston.transports.File({ filename: 'vwap-logs.log' }),
],
});
// Load or build the Deep Learning model with LSTM for time-series prediction
this.model = this.buildAdvancedDeepLearningModel();
}
// Main function to execute orders using VWAP and Deep Learning
async executeOrder(
orderType: 'buy' | 'sell',
quantity: number,
marketData: any,
): Promise<OrderExecutionResult> {
try {
// Step 1: Fetch and cache the latest market data from multiple sources
const currentMarketData = await this.getAggregatedMarketData();
const enrichedMarketData = { ...currentMarketData, ...marketData };
// Step 2: Use the advanced Deep Learning model to predict price trends
const priceTrend = await this.predictPriceTrend(enrichedMarketData);
// Step 3: Calculate VWAP strategy with dynamic volume adjustment
const executionPlan = this.calculateAdvancedVWAP(quantity, enrichedMarketData, priceTrend);
// Step 4: Execute the VWAP strategy with error handling and optimization
const executedPrices = await this.executeVWAP(orderType, executionPlan);
// Step 5: Calculate the average executed price
const averageExecutedPrice = executedPrices.reduce((sum, price) => sum + price, 0) / executedPrices.length;
// Step 6: Advanced logging and security monitoring
this.logger.info(`Order executed: Average Price - ${averageExecutedPrice}`);
return {
success: true,
executedPrices,
averageExecutedPrice,
details
: executionPlan,
};
} catch (error) {
this.logger.error(`Execution error: ${error.message}`);
return {
success: false,
executedPrices: [],
averageExecutedPrice: 0,
details: error.message,
};
}
}
// Helper function to get aggregated market data from multiple sources
private async getAggregatedMarketData() {
try {
// Fetch data from multiple APIs for redundancy and reliability
const [api1, api2] = await Promise.all([
axios.get('https://api.exchange1.com/market-data', { httpsAgent }),
axios.get('https://api.exchange2.com/market-data', { httpsAgent }),
]);
// Aggregate and normalize data
const aggregatedData = {
currentPrice: (api1.data.currentPrice + api2.data.currentPrice) / 2,
volume: Math.max(api1.data.volume, api2.data.volume), // Use max volume
};
// Cache the aggregated data
redisClient.setex('marketData', 60, JSON.stringify(aggregatedData)); // Cache for 60 seconds
return aggregatedData;
} catch (apiError) {
this.logger.error(`Failed to fetch market data: ${apiError.message}`);
throw new Error('Failed to fetch market data from multiple sources');
}
}
// Function to build an advanced Deep Learning model with LSTM for time-series prediction
private buildAdvancedDeepLearningModel(): tf.LayersModel {
const model = tf.sequential();
model.add(tf.layers.lstm({ units: 50, inputShape: [10, 1], returnSequences: true }));
model.add(tf.layers.lstm({ units: 25, returnSequences: false }));
model.add(tf.layers.dense({ units: 1, activation: 'linear' }));
model.compile({ optimizer: 'adam', loss: 'meanSquaredError' });
return model;
}
// Function to predict price trends using the advanced Deep Learning model
private async predictPriceTrend(marketData: any): Promise<number> {
const inputTensor = tf.tensor(Object.values(marketData).map(value => [value]), [1, 10, 1]);
const prediction = this.model.predict(inputTensor) as tf.Tensor;
const predictedValue = (await prediction.data())[0];
return predictedValue;
}
// Function to calculate advanced VWAP execution strategy
private calculateAdvancedVWAP(quantity: number, marketData: any, priceTrend: number) {
const timeSlices = 10; // Number of slices to divide the order into
const volumeWeightedPrices = [];
let remainingVolume = quantity;
for (let i = 0; i < timeSlices; i++) {
const sliceVolume = Math.ceil(remainingVolume / (timeSlices - i));
const adjustedPrice = marketData.currentPrice * (1 + priceTrend * (i / timeSlices));
volumeWeightedPrices.push({ price: adjustedPrice, volume: sliceVolume });
remainingVolume -= sliceVolume;
}
return volumeWeightedPrices;
}
// Function to execute VWAP orders with advanced error handling
private async executeVWAP(orderType: 'buy' | 'sell', executionPlan: { price: number, volume: number }[]) {
const executedPrices = [];
for (const { price, volume } of executionPlan) {
try {
// Simulate order execution logic with risk management
const executedPrice = orderType === 'buy'
? price * (1 + Math.random() * 0.001)
: price * (1 - Math.random() * 0.001);
executedPrices.push(executedPrice);
// Simulate delay and execution
await new Promise(resolve => setTimeout(resolve, 100)); // Simulate 100ms delay for each order
} catch (error) {
this.logger.error(`Error executing order at price ${price}: ${error.message}`);
}
}
return executedPrices;
}
}


نتیجهگیری

کد ارائه شده یک معماری پیشرفته و بهینه را برای اجرای سفارشهای مالی در بازارهای دیجیتال معرفی میکند. ترکیب الگوریتم VWAP با مدلهای یادگیری عمیق مانند LSTM امکان پیشبینی روندهای پیچیده قیمتی را فراهم میکند. همچنین، استفاده از منابع داده متنوع و مکانیزمهای امنیتی پیشرفته، این پیادهسازی را برای محیطهای حرفهای مناسب میسازد. این سیستم با مدیریت خطای جامع و طراحی معماری مقیاسپذیر، یک راهحل قوی و قابل اعتماد برای اجرای سفارشهای هوشمند ارائه میدهد.

deep learningیادگیری ماشینیادگیری عمیقblockchain
برنامه نویس علاقه مند به طراحی الگوریتم
شاید از این پست‌ها خوشتان بیاید