ضریب همبستگی روابط میان دو متغیر را به ما نشان میدهد. یعنی با توجه به این ضریب میتوانیم بفهمیم که آیا دو متغیر با هم ارتباط دارند یا نه. و اگر ارتباطی دارند جهت این ارتباط کدام طرفی است. از این ضریب در بازار بورس به منظور پیدا کردن روابط بین سهام استفاده میکنیم.
بارها توسط افراد مختلف در حوزههای شغلی گوناگون یا در رسانهها به منظور تحلیل آماری و بیان نتایج تحقیقات، واژه ضریب همبستگی یا اصطلاح لاتین آن Correlation را شنیدهایم. یکی از مهم ترین کاربردهای این مفهوم در بازارهای مالی است، که در این مطلب به بررسی آن و مباحث پیرامونی در حوزه بازار بورس میپردازیم. ضریب همبستگی یک ابزار آماری برای تعیین نوع و درجه رابطه متغیرهای کمی با یکدیگر است. این مفهوم یکی از معیارهای تشخیص میزان همبستگی دو متغیر میباشد. در واقع این ضریب نوع رابطه یعنی مستقیم یا معکوس بودن و شدت رابطه یعنی بازه ۱+ تا ۱- را نشان میدهد. همچنین اگر میان دو متغیر مذکور رابطهای وجود نداشته باشد، مقدار ضریب همبستگی برابر صفر است.
اندازه عددی بدست آمده برای این ضریب بین 1- تا 1+ می باشد که به کمک آن می توان درجه ای را که دو متغیر بایکدیگر در ارتباط هستند را نشان داد. در صورتی که عدد همبستگی بین صفر تا 1 باشد نوع رابطه را مستقیم می نامیم.
رابطه مستقیم به این معنی است که با افزایش یک متغیر انتظار می رود که اندازه متغیر دیگر نیز افزایش یابد و برعکس با کاهش اندازه یک متغیر اندازه متغیر دیگر نیز کاهش یابد. به عنوان مثال وقتی گفته می شود بین مصرف میوه با شادابی پوست رابطه مستقیمی وجود دارد یعنی که اگر فردی مصرف میوه اش بیشتر باشد انتظار می رود که پوست شادابتری داشته باشد و یا اینکه افراد هر چقدر پوست شادابتری داشته باشند انتظار می رود که مصرف میوه آنها نیز بالاتر باشد و برعکس.
در صورتی که عدد ضریب همبستگی بین صفر تا 1 – باشد رابطه را از نوع معکوس می نامیم. رابطه معکوس به این معنی است که با افزایش یک متغیر انتظار می رد که اندازه متغیر دیگر نیز کاهش یابد و برعکس با کاهش اندازه یک متغیر اندازه متغیر دیگر نیز افزایش یابد. به عنوان مثال وقتی گفته می شود بین مصرف سیگار با طول عمر رابطه معکوس وجود دارد یعنی که اگر فردی مصرف سیگارش بیشتر باشد انتظار می رود که طول عمر کمتری داشته باشد و یا اینکه افراد هر چقدر طول عمر بیشتری داشته باشند انتظار می رود که کمتر سیگار مصرف کرده باشند و برعکس.
علاوه بر این درصورتی که مقدار عددی همبستگی برابر 1+ باشد همبستگی را مستقیم کامل و اگر برابر 1 – باشد آن را معکوس کامل و در صورتی که برابر صفر باشد می گوییم بین دو متغیر هیچگونه رابطه ای وجود ندارد.
بطور کلی:
۱- اگر هر دو متغیر با مقیاس رتبهای باشند از شاخص تاوکندال استفاده میشود.
۲- اگر هر دو متغیر با مقیاس نسبتی و پیوسته باشند از ضریب همبستگی پیرسون استفاده میشود.
۳- اگر هر دو متغیر با مقیاس نسبتی و گسسته باشند از ضریب همبستگی اسپیرمن استفاده میشود.
در پایین فقط ضریب همبستگی پیرسون را با هم بررسی میکنیم.
ضریب همبستگی پیرسون را میتوانیم معروفترین انواع این ضریب بدانیم. وقتی تعداد دادهها زیاد است و توزیعها هم نرمال هستند بهتر است از ضریب پیرسون استفاده کنیم تا شدت و جهت روابط بین دو متغیر را بررسی کنیم. این ضریب مقدار وابستگی بین دو متغیر تصادفی را خیلی خوب به ما نشان میدهد.
در ابتدای مقاله فرمول مربوط به این ضریب را بررسی کردیم. وقتی دادهها را در فرمول جایگذاری کنیم، نتایج مختلفی به دست میآید. در تفسیر ضریب همبستگی پیرسون به طور کلی سه حالت زیر را داریم:
دو نکته اصلی درباره همبستگی بین نمادها نهفته است که میتواند به تصمیم گیری بهتر به ما کند.
نکته اول: امکان ندارد که عمده پرتفوی بورسی یک شرکتی چندین روز مثبت باشد ولی خود آن سهم منفی باشد. اگر چنین شد، فرصت خوبی برای سرمایه گذاری ایجاد شده است و هر چقدر این اختلاف بیشتر شود سود بیشتری در انتظار خواهد بود. برای مثال اگر دیدید فملی چندین روز صف خرید است و وسپه در حال درجا زدن است، احتمالا وسپه گزینه خوبی برای خرید است چرا که درصدی از فملی برای وسپه است و از رشد آن متنفع خواهد شد. این مسئله تحت عنوان NAV سهم در تحلیل بنیادی مورد بررسی قرار میگیرد.
نکته دوم: برخی نمادها به علت پرتفوی مشابه، رفتار قیمتی مشابهی دارند. این موضوع به یک سرمایه گذار حرفه ای کمک خواهد کرد که موقعیتهای خوبی را شناسایی کند. برای مثال اگر در یک روز وسپه صف خرید بود و تاصیکو منفی، احتمالا میتوانید تاصیکو را حداقل به دید کوتاه مدت خریداری کنید چرا که ضریب همبستگی بین این دو نماد بالاست.
این بخش را با یک مثال از کاربرد ضریب همبستگی در چیدمان سبد سهام ادامه میدهیم. دو شرکت الف و ب را در نظرتان مجسم کنید. حالا فرض کنید شرکت الف ۱۱۰ میلیون سهم شرکت ب را که در گروه خودروسازی فعال است خریداری کرده است. پس انتظار داریم وقتی در سهم ب اتفاقات مثبتی رخ بدهد، شاهد تعدیل مثبت در سهم الف باشیم. یعنی با افزایش قیمت سهم ب، سهم الف هم سودسازی خوبی را خواهد داشت. هر چه شرکت الف درصد مالکیت بالاتری داشته باشد، سودسازیاش هم بیشتر خواهد بود. اما این اطلاعات به چه دردی میخورند؟
قضیه خیلی ساده است. اگر سهم شرکت الف را خریدهاید دیگر سهم شرکت ب را نخرید. درست است که این دو شرکت سهام متفاوتی دارند اما به هر حال با یکدیگر همبستگی دارند. اینطور میتوانید سبد سهامی بچینید که پوشش ریسک در آن رعایت شده است. این مسئله یکی از اصول اولیه برای متنوع سازی سبد سهام است. اگر به ترکیب سهامداران شرکتهای فعال در بورس ایران نگاه کنید، میتوانید ببینید عمده سهامداران شرکتها چه کسانی هستند. به این ترتیب نه تنها ریسک را کم کردهاید بلکه ممکن است بازده بیشتری را هم به دست بیاورید.
منابع اصلی:
- https://akhbarbourse.com/what-is-correlation-coefficient/