مرکز تحقیقات هوش مصنوعی پارت
مرکز تحقیقات هوش مصنوعی پارت
خواندن ۱۹ دقیقه·۴ سال پیش

تعریف ساده هوش مصنوعی و کاربردهای آن

هوش مصنوعی چیست؟
هوش مصنوعی چیست؟

هوش مصنوعی در یک نگاه

با شتابی که هوش مصنوعی دارد پیشرفت می‌کند و رد پایش در جای‌جای زندگی و کارمان پیداست، در آینده‌ای نه‌چندان دور  بخش مهمی از زندگی ما را در بر خواهد گرفت. روزی می‌رسد که هوش مصنوعی علاوه بر اینکه به ما پیشنهاد می‌کند چه آهنگی گوش کنیم یا چه رنگ لباسی به پوستمان می‌آید، به‌جای پزشک و قاضی و پلیس هم تصمیم‌گیری کند.

هوش مصنوعی چیست؟

بی‌راه نیست اگر بگوییم تصور عمومی از هوش مصنوعی با تصویر ربات‌ها گره خورده است. این تصور بیش از همه حاصل فیلم‌ها و انیمیشن‌های علمی-تخیلی است. گرچه این تصور رگه‌هایی از واقعیت هوش مصنوعی را در خود دارد، اما تعریف دقیقی از این علم نیست.

در واقع ما امروز برای رسیدن به آن چیزی که در فیلم‌ها و سریال‌های هالیوودی می‌بینیم راه بسیاری در پیش داریم. البته عجیب نیست که غیرمتخصصان از این حوزه تصور درستی نداشته باشند، جالب است بدانید که نظرسنجی‌ها نشان می‌دهد حتی رهبران کسب‌وکارهای بزرگ نیز درک جامعی از وضعیت AI ندارند.

با این توضیحات طبیعتاً ارائه دادن تعریفی واحد از هوش مصنوعی، که مورد قبول همه‌ی دانشمندان این حوزه باشد، کار دشواری است. شاید بهترین کار برای آسان کردن درک هوش مصنوعی و اینکه هوش مصنوعی چیست، این است که بحث را از کاربردها و شاخه‌های AI شروع کنیم.

به‌هرحال، اگر دوست دارید در آغاز تعریفی، هر چند کلی، از هوش مصنوعی داشته باشید، احتمالاً این تعریف بتواند تصویری کلی از این حوزه را برای‌تان بسازد: «هوش مصنوعی شاخه‌ای گسترده از علوم کامپیوتر است که ماشین‌های هوشمندی می‌سازد که از رفتارهای انسانی تقلید می‌کنند».

در واقع، این ماشین‌ها تصمیماتی می‌گیرند که معمولاً نیازمند سطحی از تجربه‌ی انسانی است. و به انسان‌ها کمک می‌کند تا مشکلات احتمالی را پیش‌بینی کند و بر آن‌ها فائق آید.

نقطه‌ی قوت خاص هوش انسان انطباق‌پذیری آن است. ما ظرفیت آن را داریم که با وضعیت‌های گوناگون محیطمان کنار بیابیم و رفتارمان را از با استفاده از یادگیری تغییر دهیم. تلاش برای دادن این ویژگی به ماشین‌ها منجر به شکل‌گیری شاخه‌ای به نام یادگیری ماشین در هوش مصنوعی شده است. به‌زعم بسیاری از متخصصان، این حوزه مهم‌ترین زیرشاخه‌ی AI است. البته خود یادگیری ماشین هم زیرشاخه‌هایی دارد که مهم‌ترینشان یادگیری عمیق است.

تصویر زیر درک بهتری از توضیحات پاراگراف قبلی به‌دست می‌دهد. یادگیری ماشین و یادگیری عمیق شباهت‌ها و تفاوت‌هایی با هم دارند. شباهت این دو بخش آنجایی است که هر دو از الگوریتم‌ها استفاده می‌کنند تا ماشین‌هایی با کارکردهای ویژه طراحی کنند که نیازی به دخالت عامل انسانی نداشته باشند. اما مهم‌ترین تفاوت یادگیری عمیق و یادگیری ماشین این است که در یادگیری عمیق الگوریتم‌ها لایه‌های بیشتری دارند و پیچیده‌ترند.

Artificial intelligence
Artificial intelligence

داستان شروع هوش مصنوعی

ایده‌ی خلق موجودات هوشمندی که بتوانند کارهای انسان را انجام دهند، به اسطوره‌ها برمی‌گردد. انسان از وقتی که می‌توانسته خیال‌پردازی کند، همیشه به‌دنبال خلق کردن موجوداتی بوده که تحت فرمان او باشند و دستوراتش را اجرا کنند. البته که ساخت چنین موجودی به همین سادگی‌ها نیست و هنوز که هنوز است بشر موفق به ساخت آن نشده و فعلاً در حد همان خیال‌پردازی‌های فیلم‌های علمی – تخیلی مانده است.

  • نخستین گام‌ها

اولین تلاش انسان برای ساخت ماشینی که به‌جای انسان کار کند و تصمیم بگیرد، به حدود قرن ۱۷ بازمی‌گردد. چند قرن بعد، در دهه‌‎ی ۱۹۳۰ کورت گودل، آلونسو چرچ و آلن تورینگ بنیادهای اساسی منطق و نظریه‌ی علم کامپیوتر را بنا نهادند.

در جنگ جهانی دوم، تصمیم‌گیری و محاسبات سریع برای شکستن پیام‌های رمزی دشمن، به‌قدری مهم شد که آلن تورینگ (پدر هوش مصنوعی جهان) ساخت ماشین رمزشکن را آغاز کرد. داستان اختراع ماشین‌ها با قابلیت‌های مختلف، دست‌مایه‌ی ساخت فیلم‌های علمی – تخیلی زیادی شده است، همچنین که داستان ساخت اولین ماشین توسط آلن تورینگ، موضوع یکی از همین فیلم‌هاست.

آلن تورینگ آزمونی برای سنجش هوشمندی ماشین‌ها طراحی کرد که به آزمون تورینگ مشهور است. از نظر تورینگ هر ماشینی که بتواند از پس این آزمون بربیاید هوشمند است.

ارتباط میان هوش مصنوعی، یادگیری ماشین و یادگیری عمیق

با بررسی سازوکارهای مغز می‌توانیم سر از کار سیستم‌های هوشمند دربیاوریم و آن‌ها را در کامپیوتر شبیه‌سازی کنیم. بنابراین، AI برنامه‌ای است که از هوش انسانی الهام گرفته است و روی ماشین‌ها پیاده‌سازی می‌شود. به این ترتیب ماشین می‌تواند همان کارهایی را که یک انسان انجام می‌دهد را در زمانی کوتاه‌تر و با دقتی بیشتر انجام دهد.

برنامه‌ها اغلب روی سیستم‌های کامپیوتری پیاده‌سازی می‌شوند و به‌واسطه‌ی این برنامه، کامپیوتر می‌تواند درمورد مسائلی که در اختیارش قرار می‌دهند تصمیم بگیرد، برنامه‌ریزی کند یا نتیجه را پیش‌بینی کند.

سطوح  و انواع هوش مصنوعی

۱. هوش مصنوعی محدود یا ضعیف

به سیستم‌های هوش مصنوعی اشاره دارد که برای انجام دادن کاری خاص و محدود طراحی شده‌اند. این نوع از AI را می‌توانیم در برخی از  نرم‌افزاهایی که روزانه استفاده می‌کنیم ببینیم. مثلاً نرم‌افزاهای پیش‌بینی وضعیت آب‌وهوا یا نرم‌افزار بازی شطرنج. AI ضعیف بر مجموعه‌داده‌ای خاص و مشخص متکی است، به همین خاطر نمی‌توان از آن برای وظایف دیگری خارج از همان مجموعه‌داده استفاده کرد.

هوش مصنوعی ضعیف، برخلاف هوش مصنوعی قوی، با اینکه در نگاه اول پیچیده به نظر می‌رسد، خودآگاه نیست و در شرایطی از پیش‌ تعیین‌شده عمل می‌کند.

همه‌ی ماشین‌های هوشمندی که امروز ما به نوعی از آن‌ها استفاده می‌کنیم در همین نوع AI قرار می‌گیرند Google Assistant، Google Translate, Siri و دیگر ابزارهای متکی به پردازش زبان طبیعی مثال‌هایی از AI ضعیف‌اند. شاید به‌زعم بسیاری ابزارهایی که نام بردیم چندان هم «ضعیف» نباشند، اما دلیل «ضعیف» نامیدن این ابزارها این است که راه بسیاری دارند تا از هوشی شبیه به هوش انسانی برخوردار شوند. به عبارت دقیق‌تر، این ابزارها نمی‌توانند به‌صورت خودبسنده و مستقل بیندیشند.

بااین‌حال، هیچ‌یک از چیزهایی که گفتیم به معنای کم‌ارزش بودن هوش مصنوعی ضعیف نیست. این بخش از AI نمودی است از خلاقیت و هوش ما انسان‌ها.

۲. هوش مصنوعی قوی

برخلاف هوش مصنوعی ضعیف، این نوع از AI محدود به وظیفه‌ی خاصی نیست و از پس طیف وسیعی از کارها برمی‌آید. در واقع، هوش مصنوعی قوی به ماشین‌هایی اشاره دارد که نوعی از هوش انسانی را می‌توان در آن‌ها دید. به عبارت دیگر، AI قوی از پس هر کاری که انسان‌ها انجام می‌دهند برمی‌آید. نمونه‌های کامل از این ماشین‌ها را می‌توان در فیلم‌ها و رمان‌های علمی-تخیلی دید؛ آن‌جا که ربات‌ها بی‌هیچ نیازی به انسان کارهای خود را انجام می‌دهند. این ربات‌ها آگاهی دارند و احساسات را نیز درک می‌کنند.

۳. فراهوش مصنوعی

به ماشین‌های اشاره‌ دارد که از سطح هوش انسانی گذشته‌اند و دیگر محدودیت‌های هوش انسانی را ندارند. این گونه از AI، شاید همانی باشد که بسیاری را نگران آینده‌ی استفاده از این فناوری‌ها کرده است.

برخی از مفاهیم مربوط به حوزه‌های هوش مصنوعی

اگر به‌‎دنبال کلید‌واژه‌هایی برای جست‌وجوی بیشتر در حوزه‌ی AI می‌گردید می‌توانید از مفاهیم زیر استفاده کنید:

۱. بینایی ماشین

فناوری است که می‌کوشد نوعی از بینایی را برای ماشین فراهم آورد. بینایی ماشین در فرایند‌های گوناگون صنعتی از تشخیص چهره، تحلیل ویدیو، ocr  و تشخیص اشیا تا تشخیص الگو استفاده می‌شود.

از این فناوری در خودروهای خودران نیز استفاده می‌شود. با اینکه شرکت‌های زیادی در تلاشند تا خودروهایی بسازند که نیازی به رانندگی انسان‌ها نداشته باشد، این حوزه بیشتر با نام شرکت تسلا و خودروهای آن گره خورده است.

علی‌رغم نوپا بودن هوش مصنوعی و بینایی ماشین در ایران، شرکت‌های فعال در حوزه‌ بینایی ماشین در ایران تعدادشان امیدوارکننده است و نویدبخش آینده‌ای روشن‌تر در این حوزه است.

۲. پردازش گفتار

برای اینکه با مباحث و فناوری‌های این حوزه در حد عناوین آشنا شوید بد نیست به چند مورد از فناوری‌های مهم این شاخه از AI اشاره کنیم: حوزه‌های پردازش گفتار مانند سیستم تشخیص گفتار، سنتز گفتار، شناسایی گوینده، چت بات، تحلیل معنایی متون، تحلیل احساسات، جست‌وجوگر معنایی.

سیستم‌های پردازش گفتار در کنار NLP این امکان را برای ماشین‌های هوشمندی، چون اسمارت‌فون‌ها، فراهم می‌کنند که از طریق زبان گفتاری با کاربران ارتباط برقرار کنند. احتمالاً معروف‌ترین تکنولوژی بازشناسی گفتار که اسمش را شنیده‌اید،Siri ، محصول اپل باشد.

Siri میکروفون‌هایی برای تشخیص صدا دارد و از بازشناسی گفتار خودکار برای تبدیل صدا به متن استفاده می‌کند. البته این دو مراحل ابتدایی هستند که در Siri انجام می‌شود و تا کامل شدن فرایند چند مرحله‌ی دیگر در این ابزار طی می‌شود.

مانند بینایی ماشین، شرکت‌های فعال در حوزه پردازش گفتار در ایران نیز در حال پا گرفتن هستند و هر روز بر تعدادشان افزوده می‌شود.

۳. داده‌کاوی

همان‌طور که از نامش نیز مشخص است به حوزه‌ی تحلیل داده‌ها،به‌ویژه داده‌های کلان، مربوط است. در واقع، در داده ‌کاوی تلاش می‌شود کار مربوط به استخراج الگو از داده‌ها را به ماشین‌ها سپرد. با همین توضیح کوتاه هم می‌شود دانست که داده‌کاوی چقدر می‌تواند مهم باشد، چرا که الگوهای استخراج شده از داده‌های کسب‌وکارها می‌تواند اطلاعات بسیاری مفیدی برای برنامه‌های آتی شرکت‌ها فراهم آورد.

این شاخه از AI، ترکیبی از ابزارهایی آماری و هوش مصنوعی با مدیریت مجموعه‌داده‌هاست. داده کاوی معمولاً در کسب‌وکار(بیمه، بانکداری و…)، پژوهش‌های علمی(نجوم و پزشکی) و مسائل مربوط به امنیت(تشخیص مجرمان و تروریست‌ها) کاربردهای گسترده‌ای دارد.

البته اهمیت یافتن مجموعه‌داده‌ها مسائل و مشکلاتی را نیز پدید آورده است. برای نمونه، حفظ اطلاعات شخصی کاربران در مجموعه‌داده‌های بزرگ بیش از گذشته پر رنگ‌تر شده و چالش‌هایی برای نگه‌داری از این داده‌ها پیش آمده است.

به‌خاطر کاربردهای بسیار داده‌کاوی و نیازی که در این حوزه احساس می‌شود بر تعداد شرکت‌های داده کاوی در ایران روز‌به‌روز افزوده می‌شود.

۴. پردازش زبان طبیعی

پردازش زبان طبیعی آموزش زبان انسانی  به ماشین‌هاست. این بخش از AI جایی است که زبان طبیعی و زبان‌های مصنوعی (مانند زبان‌های برنامه‌نویسی) با هم پیوند می‌خورند. تلاش‌ها برای پردازش زبان با کمک کامپیوترها به نسبت بسیاری از شاخه‌های هوش مصنوعی عمر طولانی‌تری دارد.

در پردازش زبان طبیعی نیاز به مجموعه‌داده‌های زبانی داریم تا بتوانیم پردازش را روی آن‌ها انجام دهیم. مفهوم پیکره زاده‌ی همین نیاز است. می‌توانید با جست‌وجوی این مفهوم چند پیکره‌ی مشهور انگلیسی را ببینید.

اگر کنجکاوید بدانید که چگونه روی این پیکره‌ها پردازش انجام می‌شود باید سراغ مفاهیم تخصصی‌تر بروید. برای مثال در پایتون می‌توانید کتابخانه‌ی nltk را فرابخوانید. این کتابخانه امکانات بسیار خوبی برای پردازش زبان طبیعی در اختیارتان می‌گذارد.

شرکت‌های فعال در حوزه پردازش زبان طبیعی در ایران  می‌کوشند ابزارهای پردازش زبان طبیعی را بومی‌سازی و روی زبان فارسی پیاده کنند.

موارد استفاده از هوش مصنوعی

با اینکه هوش مصنوعی تازه در ابتدای راه قرار دارد و چند دهه بیشتر نیست که نمودهایش در زندگی روزمره روبه‌گسترش گذاشته، اما همین حالا هم می‌توان در بخش‌های مختلف اقتصادی و علمی ردپایش را دید.

تصمیم‌گیری‌های AI بر اساس الگوریتم‌هایی است که قابلیت درک شرایط را دارند و مانند انسان توان استدلال و حل مسئله دارند. بنابراین هوش مصنوعی می‌تواند در زمینه‌ی دانش‌های متفاوتی مانند فلسفه، زبان‌شناسی، ریاضی، روان‌شناسی، عصب‌شناسی، تئوری کنترل، احتمالات، بهینه‌سازی و فیزیولوژی استفاده شود و کمک بزرگی به تصمیم‌گیری‌های انسان باشد.

AI با استفاده از الگوریتم‌ها، پردازش‌هایی روی اطلاعات و داده‌های موجود انجام می‌دهد تا بر اساس نتایج آن تصمیمات لازم برای بهبود کار را بگیرد.

حجم و تنوع زیاد داده‌های موجود در کنار هزینه‌ی پایین محاسبات و ذخیره‌سازی داده‌ها باعث شده مدل‌هایی ساخته شوند تا از روی این داده‌ها، اطلاعات مفید استخراج شود. سیستم‌های سنتی نرم‌افزاری این قابلیت را ندارند، در عوض هوش مصنوعی همان چیزی است که می‌تواند با استخراج داده‌های مفید از بین داده‌های موجود، چراغ روشنی در دل داده‌های تاریک باشد.

یکی از پیشرفت‌های ویژه‌ای که کسب‌و‌کارها می‌توانند داشته باشند، استفاده از هوش مصنوعی است که موجب تمایز و به‌دنبال آن افزایش کارآمدی و سودآوری آن‌ها می‌شود. در همین راستا شرکت‌های فعال در حوزه‌ی AI، خدماتی ارائه می‌دهند که باعث بهبود عملکرد کسب‌وکارها می‌شود. زمینه‌های زیادی برای استفاده از هوش مصنوعی وجود دارد. به‌عنوان مثال AI توان ارائه‌ی خدمات در حوزه‌های زیر را دارد:

  • هوش مصنوعی در کشاورزی

کشاورزی از قدیمی‌ترین شغل‌ها در جهان امروز است. هزاران سال قبل، ابداع کشاورزی و کشت روشمند محصولات زراعی باعث انقلابی در زیست انسان‌ها شد که به انقلاب کشاورزی معروف است. از زمانی که انسان هوشمند، یکجانشینی را بر کوچ ترجیح دادند و کشاورزی را آغاز کردند تا به امروز کشاورزی تغییرات بسیاری را از سر گذرانده و فناوری‌های بسیاری وارد این حوزه شده‌اند. آخرین نسخه از فناوری‌های جدید که به پشتوانه‌ی هوش مصنوعی ممکن شده است کم‌کم راهش را به کشاورزی باز می‌کند.

هوش مصنوعی را بسیاری جدیدترین انقلاب در زندگی بشر می‌دانند. اکنون، مدتی است که استفاده از هوش مصنوعی در کشاورزی آغاز شده است. روش‌های سنتی کشاورزی مشکلاتی دارند که می‌توان با کمک AI آن‌ها را رفع کرد. برای مثال، می‌توان با استفاده از نرم‌افزارهای هوش مصنوعی گزارش‌هایی از وضعیت آب‌وهوا یا شرایط خاک به دست آورد و بر اساس آن برنامه‌ریزی کرد. کشاورزان اکنون می‌توانند با استفاده از AI زمان مناسب کشت و برداشت را تخمین بزنند، میزان آب مناسب برای هر محصول و زمان مناسب آبیاری را بدانند.

  • هوش مصنوعی در پزشکی

یکی از قدیمی‌ترین کاربردهای هوش مصنوعی کاربردهای پزشکی آن است. تلاش‌های اولیه برای آوردن هوش مصنوعی به این حوزه شاید اندکی ناامیدکننده بود. نخستین فناوری بر پایه‌ی AI در این حوزه، MYCIN بود که در دهه‌ی ۱۹۷۰ در دانشگاه پرینستون برای تشخیص عفونت‌هایی استفاده شد که از طریق خون منتقل می‌شوند. این فناوری و فناوری‌های مشابه در این دوره، با اینکه بسیار نویدبخش بودند، اما هیچ‌گاه از سطح نمونه‌های آزمایشگاهی فراتر نرفتند. در واقع هم این سیستم‌های اولیه چندان برتری در ابزارهای تشخیصی که خود پزشکان انجام می‌دادند نداشت.

پس از مدتی کم‌کم شرایط تغییر کرد. تا جایی که کمتر روزی است که خبری در حوزه‌ی هوش مصنوعی در پزشکی منتشر نشود. البته هنوز بسیار از این فناوری‌های جدید مرحله‌ی آزمایشی خود را می‌گذرانند. اما شاید برای درک بهتر کاربردهای عملیاتی‌تر AI در پزشکی بد نباشد اشاره‌ای به یکی از همین کاربردها داشته باشیم: استفاده از هوش مصنوعی برای تشخیص بهترین شیوه‌ی زایمان. در این فناوری، AI با سنجش وضعیت زنان باردار می‌تواند پیشنهاد دهد که از بین روش طبیعی زایمان و سزارین کدام روش مناسب‌تر است.

  • هوش مصنوعی در بازارهای مالی و بانکداری

گفتیم که یکی از امکان‌هایی که هوش مصنوعی در اختیار ما قرار می‌دهد توان پیش‌بینی است. امروز دیگر بحث‌ تحلیل بازارهای مالی از طریق هوش مصنوعی صرفاً یک ایده نیست. الگوریتم‌هایی که برای تحلیل بازار آموزش دیده‌اند می‌توانند لحظه‌به‌لحظه بازارهای مالی را رصد کنند و با اطلاعاتی که جمع‌آوری می‌کنند تصویر واضح و دقیق از وضعیت هر سهم در بازار ارائه ‌دهند. حتی می‌توانید معامله کردن را نیز به بات‌هایی بسپارید که برای این کار طراحی شده‌اند.

صنعت بانکداری نیز از قافله‌ی استفاده از AI جا نمانده است. هوش مصنوعی در بانکداری جای پای‌اش را باز کرده است. استفاده از چت‌بات‌ها مدت‌هاست که در بانکداری رواج یافته است. چت‌بات امکانی است که از طریق آن کاربر شما می‌تواند با نرم‌افزاری که در آن از هوش مصنوعی استفاده شده گفت‌وگو کند. یکی از امکان‌های جالبی که این چت‌بات‌های به‌ظاهر ساده فراهم آورده‌اند این است که خدمات‌دهندگان در هر ساعتی از شبانه‌روز در دسترس مشتریان خود هستند. همان‌طور که گفتیم این تنها بخش کوچکی از نقش هوش مصنوعی در بانکداری است.

  • هوش مصنوعی در حوزه‌ی آموزش

بخش آموزش از حوزه‌‌هایی است که هوش مصنوعی هنوز در آن جای پیشرفت‌های بسیاری دارد. مخصوصاً این روزها که همه‌گیری کرونا دانش‌آموزان و معلمان را خانه‌نشین کرده جای خالی فناوری‌های آموزشی بر پایه‌ی AI بیش از پیش احساس می‌شود.

یکی از مهم‌ترین امکان‌هایی که هوش مصنوعی در آموزش می‌تواند فراهم آورد شخصی‌سازی آموزش با توجه به نیازهای منحصربه‌فرد هر کدام از دانش‌آموزان است. از نقاط ضعف سیستم آموزشی امروز این است که برای همه‌ی دانش‌آموزان محتوای درسی یکسانی تدارک می‌بیند و به تفاوت‌های فردی دانش‌آموزان توجهی ندارد. طبیعی است سرعت یادگیری و علائق دانش‌آموزان در هر کدام از شاخه‌های درسی یکسان نباشد. حال تصور کنید سیستمی داشته باشیم که با دادن سابقه‌ی تحصیلی دانش‌آموز به آن برنامه‌ی درسی مناسب برای دانش‌آموز را در اختیارتان قرار دهد. در واقع، این یکی از ساده‌ترین کارهایی است که می‌توان از ماشین‌هایی برپایه‌ی AI انتظار داشت.

می‌توان چند قدم جلوتر رفت. مثلاً می‌توان سیستم را طوری طراحی کرد که با توجه به برنامه‌ی شخصی دانش‌آموز محتوای درسی مناسب او را نیز در اختیارش قرار دهد و ارزشیابی دانش‌آموز را نیز خودش بر عهده بگیرد. در واقع، ما در اینجا با معلم هوشمندی طرف هستیم که همیشه برای دانش‌آموز وقت دارد و نیازهای هر دانش‌آموز را در نظر می‌گیرد.

بنابراین اگر بخواهیم، با توجه به گفته‌های پیشین، درباره‌ی کاربردهای AI در بخش‌های مختلف سخت‌گیرانه صحبت کنیم، باید بگوییم تنها تکنولوژی‌هایی را می‌توان کاملاً در حوزه‌ی هوش مصنوعی قرار داد که خودشان بتوانند بدون دخالت عامل انسانی چیز جدیدی را فرابگیرند.

در این مورد شاید فناوری DeepMind گوگل مثال خوبی باشد. این فناوری را در AI در مقوله‌ی شبکه‌های عصبی جای می‌دهند. DeepMind قادر است بدون تکیه بر الگوریتم‌های رفتاری از پیش تعریف شده تصمیم‌گیری کند. به‌خاطر کم بودن تکنولوژی‌هایی مثل این محصول گوگل، می‌توان گفت که هوش مصنوعی هنوز کودکی‌ نوپاست که راه بسیاری در پیش دارد. برخی از متخصصان تکنولوژی‌های امروزیِ بر پایه‌ی هوش مصنوعی را فناوری‌های شبه‌هوش مصنوعی(pseudo AI) می‌نامند تا بر نوپا بودن آن تاکید کنند.

  • هوش مصنوعی در حمل‌ونقل

از نخستین انگیزهایی که هوش مصنوعی را وارد عرصه‌ی حمل‌ونقل کرد مشکلات بی‌شمار این حوزه بود. یکی از مشکلات اساسی این حوزه آسیب‌های جانی و مالی فراوانی است که هر ساله به بسیاری وارد می‌شود.

کافی است به آمار تلفات جاده‌ای در همین کشور خودمان نگاهی بیندازید تا میزان حاد بودن این مشکل پی ببرید. ماشین‌های هوشمند که توان تحلیل قدرتمندی دارند می‌توانند در حل این مشکل به کمک انسان بیایند.

مثال دیگری از مشکلات این حوزه مسئله‌ی ترافیک است. ‌وورد AI به مدیریت ترافیک می‌تواند همان حلقه‌ی گمشده‌ی این معضل باشد. چرا که سیستم‌های هوش مصنوعی به‌سرعت می‌توانند خود را با وضعیت‌های جدید سازگار کنند و عملکرد خود را بهبود ببخشند.

  • هوش مصنوعی و صنعت سرگرمی و سینما

یکی از فناوری‌های متکی به AI که تقریباً هر روز از آن استفاده می‌کنیم و برای‌مان عادی شده است، سیستم‌های پیشنهاددهنده است. زمانی که در یوتیوب ویدئویی نگاه می‌کنید، گوگل ویدئوهایی دیگری را نیز به شما پیشنهاد می‌دهد که شاید موردپسندتان باشد. همین فناوری به‌ظاهر ساده می‌تواند با توصیه‌هایش  کسانی را که به‌صورت اتفاقی وارد سایتتان شده‌اند در سایت نگه دارد.

از ابزارهای مفید دیگری که  AI می‌تواند برای این بخش فراهم آورد،خلاصه‌سازی اخبار و گزارش‌ها برای انتشار است. خلاصه‌سازی بیش از همه بحثی است که در پردازش زبان‌ طبیعی بررسی می‌شود.

  • محیط‌زیست و انرژی

ساده‌ترین کاربرد هوش مصنوعی در این حوزه می‌تواند استفاده از AI در مدیریت نیروگاه‌ها و پالایشگاه‌ها باشد. با استفاده از هوش مصنوعی می‌توان الگوهایی برای مدیریت این مراکز داشت که خطای بسیاری کمتری داشته باشند.

یکی از جالب‌ترین کاربردهای هوش مصنوعی در حوزه‌ی محیط‌زیست، استفاده از آن برای محافظت از گونه‌های در خطر انقراض است. در یکی از این موارد، از فناوری تشخیص چهره برای حفظ گونه‌ای از میمون‌ها استفاده شده است. ردگیری گونه‌های در خطر انقراض با ابزارهای فیزیکی دشوار و هزینه‌بر است.

نرم افزارهای هوش مصنوعی تصویر گونه‌ها را با اطلاعات منحصربه‌فرد هر مورد ذخیره می‌کنند. هر تصویر جدیدی که وارد این نرم‌افزار می‌شود، به‌صورت هوشمند تحلیل می‌شود و شما می‌توانید بدانید آیا این مورد قبل از این در جای دیگری دیده شده است و مشخصات منحصربه‌فردش چیست.

وضعیت کنونی هوش مصنوعی در جهان

در سال ۲۰۲۰، هوش مصنوعی از حاشیه به متن فناوری آمد. هر روز که می‌گذرد کسب‌وکارهای بزرگ توجهشان به این حوزه بیشتر جلب می‌شود و سرمایه‌های بیشتری به این بازار سرازیر می‌شود. سریال The Social Dilemma که از نت‌فلیکس پخش شد بحث‌های داغی درباره‌ی ابعاد پیدا و پنهان AI برانگیخت.

همین بحث‌ها بسیاری از شرکت‌ها و فعالان این حوزه را برانگیخت که به سراغ تنظیم دستورالعمل‌های اخلاقی فعالیت در این حوزه بروند. کوتاه اینکه همین افزایش حساسیت‌‎ها نسبت به هوش مصنوعی نشان‌دهنده‌ی این است که در سطح جهان بسیاری متوجه اهمیت و ضرورت آن شده‌اند می‌کوشند تا این حوزه را در کنترل خود بگیرند.

شاخص استخدامی هوش مصنوعی به تفکیک کشورها

وضعیت بازار کار هوش مصنوعی در ایران

کافی است نگاهی به فهرست ارزشمند‌ترین و بزرگ‌ترین شرکت‌های جهان یا بزرگ‌ترین شرکت هوش مصنوعی ایران بیندازید. از گوگل و اپل گرفته تا فیس‌بوک و آمازون همگی شرکت‌های فناوری به حساب می‌آیند. تصور این شرکت‌ها بدون متخصصان و فناوری‌های AI تقریباً محال است.

بازار کار رشته‌ی هوش مصنوعی روز‌به‌روز گسترش پیدا می‌کند. طبیعتاً هر چقدر کاربردهای AI در رشته‌های علمی دیگر و زندگی روزمره بیشتر شود بازار کار آن نیز بزرگ‌تر خواهد شد. از نظر آکادمیک، رشته‌ی هوش مصنوعی یکی از پرطرفدارترین شاخه‌های رشته‌ی کامپیوتر در ایران است. در ایران بیشتر شرکت‌های خصوصی در این حوزه سرمایه‌گذاری می‌کنند و متخصصان هوش مصنوعی را به کار می‌گیرند.

در ایران، در سال ۱۳۹۸ دانشگاه‌های بوعلی سینا همدان، اصفهان، تبریز، زنجان، شهید بهشتی، سمنان، شیراز، صنعتی اصفهان، صنعتی امیرکبیر، صنعتی شریف، علم و صنعت، خواجه‌نصیر، فردوسی مشهد، یزد، شهید باهنر کرمان، تهران، صنعتی شاهرود و غیر انتفاعی علوم شناختی به جذب دانشجوی دکتری پرداختند.

تعداد دانشجویان دکتری جذب‌شده در این سال ۱۱۸ نفر در دوره‌های مختلف بوده است. متاسفانه یکی از خلاهای اطلاعاتی در این بخش میزان جذب نخبگان هوش مصنوعی در بازار کار ایران است

  • رتبه‌ ایران در هوش مصنوعی

بر اساس اعلام بخش تحقیق و توسعه موسسه آینده‌پژوهی دانس و فناوری سینا، ایران هشتمین کشور برتر دنیا از لحاظ مقالات پر استناد است و تنها کشوری در خاورمیانه است که در بین ۱۰ کشور برتر دارای بیشترین  مقالات پر استناد جای گرفته است

ده کشور برتر جهان از نظر تعداد مقالات هوش مصنوعی

با این آمارها طبیعتاً نباید تعجب کنید که شرکت‌های چند حوزه‌ای هوش مصنوعی بسیاری در ایران فعال‌اند. هر کدام از این شرکت‌ها در بخش‌های مختلف اقتصادی و صنعتی که پیش از این گفتیم محصولات بومی جالب و مهمی دارند.

  • درآمد متخصصان هوش مصنوعی

درآمد متخصصان هوش مصنوعی بر اساس میزان مهارتشان تفاوت‌های اساسی با هم دارد. در ایران، مثل درآمد بیشتر شغل‌ها، نمی‌توان از میانگین دریافتی متخصصان هوش مصنوعی عدد دقیقی به دست آورد. اما با بررسی درآمد متخصصان هوش مصنوعی در کشورهای دیگر می‌توان تصویری از دریافتی‌ها در این حوزه داشت.

برآوردها نشان می‌دهد در آمریکا حداقل درآمد متخصصان AI چهل‌ونه هزار دلار است. اما این عدد درآمد سالانه‌ی تنها بیست‌وپنج درصد از متخصصان هوش مصنوعی است. متوسط درآمد سالانه‌ی هفتاد‌وپنج درصد از شاغلان این حوزه چیزی در حدود صدوپنجاه هزار دلار است. البته مانند هر حوزه‌ی دیگری متخصصان برتر AI درآمدی بسیار بیشتر از این اعداد دارند

بنابر گزارشی که در کتاب بوم‌شناسی هوش مصنوعی شرکت پارت آمده است در تابستان سال ۱۳۹۹ حدود ۱۰۰ شرکت در حوزه‌ی هوش مصنوعی در ایران فعالند. این شرکت‌ها در ۵ حوزه‌ی داده‌کاوی، بینایی ماشین، پردازش گفتار، پردازش زبان طبیعی و شرکت‌های چندحوزه‌ای هوش مصنوعی مشغول به فعالیت هستند

  • چالش‌های پیش‌روی هوش مصنوعی در ایران

در بخش مشاغل هوش مصنوعی ایران در چند سال اخیر، با توسعه‌ی ICT و اپلیکیشن‌های موبایل، اینترنت و… مشاغلی مانند تاکسی‌های اینترنتی، فروش‌های اینترنتی، بازی‌ها و…. بازار غیر سخت‌افزاری پیدا کرده و به تبع آن‌ هوش مصنوعی در این بخش‌‌ها پیشرفت‌های خوبی داشته است.

در توسعه‌ی استفاده از AI و مسائل مرتبط با آن، مسئله‌ی مهم ایجاد زیست‌بومی است که در آن شرکت‌های به‌وجود بیایند و منافع آینده‌شان را در این حوزه درک کنند. از جمله چالش‌های اصلی در این بخش این است که متاسفانه ایران جایگاه مناسبی در بحث آماده بودن برای جذب هوش مصنوعی را ندارد و آمادگی لازم در این خصوص دیده نمی‌شود.

بر اساس آمار ارائه‌شده از سوی معاون وزیر ارتباطات، ایران در آمادگی جذب هوش مصنوعی  رتبه‌ی ۷۲ را در دنیا دارا بوده که بر اساس رتبه‌های ما در بخش‌های دیگر هوش مصنوعی همچون تولید علم، رتبه‌ی خوبی نیست. متاسفانه در ایران داده‌ها شامل نوعی محرمانگی می‌شوند. یکی از راهکارهای توسعه در این حوزه، در اختیار گذاشتن داده برای عموم است. با این کار است که محققان می‌توانند روی داده‌های موجود کار کنند.

بیم‌ها و امیدهای هوش مصنوعی

با ورود و گسترش تکنولوژی‌های متکی به AI جهان به چه سمتی خواهد رفت؟ آینده‌ی جهانی که در آن بسیاری از کارها به AI سپرده خواهد شد چگونه خواهد بود؟

نگرش‌ها به آینده در این حوزه متفاوت است. برخی‌ها با بدبینی تمام اتفاقات این حوزه را دنبال می‌کنند. به‌نظر این گروه از آن‌جایی که می‌توان ربات‌ها و ماشین‌ها را صرفاً برای کارویژه‌های مشخص طراحی کرد، کم‌کم این فناوری‌ها جای نیروی کار انسانی را در بخش‌های مختلف خواهند گرفت. بیکاری اولین پیامد چنین روندی خواهد بود. دیگر نیازی به انسان در حوزه‌ی اشتغال نخواهد بود و این می‌تواند بحرانی اساسی باشد.

یا مثلاً روزی را تصور کنید که ربات‌ها و ماشین‌ها به آن حدی از تکامل برسند که دیگر در تصمیم‌گیری‌ها و بهبود و تقویت‌ خود نیازی به انسان‌ها نداشته باشند. این تصاویر بیشتر به صحنه‌هایی از فیلم‌های آخرالزمانی شبیه است، اما همه‌ی این‌ها از بیم‌هایی است که شاید بسیار از متخصصان و غیر متخصصان داشته باشند.

اما این تمام ماجرا نیست. آینده‌ی خوشایندتری را نیز می‌توان تصویر کرد. انسان نیز مانند هر موجود دیگری محدودیت‌های خاص خودش را دارد. حال اگر بتوان امکانی فراهم آورد که این محدودیت‌ها را کمتر کند چه اتفاقی می‌افتد؟ تا همین‌جا که AI قدم‌های آغازینش را برمی‌دارد، در بسیاری از حوزه‌ها کار را برای انسان‌ها آسان‌تر کرده است. احتمالاً ربات‌های انسان‌یاب را دیده‌اید. ربات‌هایی که در شرایط دشوار مثل آتش‌سوزی و زلزله می‌توانند کسانی را که در زیرآوار گیر کرده‌اند یا در محاصره‌ی آتش قرار گرفته‌اند به‌آسانی نجات دهند.

کسی را تصور کنید که به هر دلیلی، مادرزادی یا مثلاً تصادف، نمی‌تواند حرکت کند. حال اگر AI امکانی فراهم آورد که بتواند به این افراد، که تعدادشان کم هم نیست، کمک کند چه اتفاقی خواهد افتاد؟

هوش مصنوعی مانند هر فناوری‌ای کاستی‌ها و امکان‌های خاص خود را دارد. ادامه‌ی راه این فناوری‌ها به خود ما انسان‌ها بازمی‌گردد. انتخاب هنوز دست خود ماست که از این فناوری‌ها در چه حوزه‌ای بهره ببریم.

جدیدترین اخبار هوش مصنوعی ایران و جهان را با هوشیو دنبال کنید

منبع: hooshio.com

هوش مصنوعیهوش مصنوعی چیستهوشیواخبار هوش مصنوعیکاربردهای هوش مصنوعی
هوشمندسازی فرآیندهای زندگی https://partdp.ai/
شاید از این پست‌ها خوشتان بیاید